Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2025 | 51 | 2

Download PDF Download RIS Download Bibtex

Abstract

Geopolymers are a relatively new type of material that can be produced from waste. They may contain hazardous compounds, such as heavy metals, which pose environmental risks if released. This study presents the results of heavy metal release from molded geopolymer composites over time and evaluates the leaching mechanisms of various elements. The study also assesses the potential ecological risk of these materials, highlighting the innovative and complex nature of the research program. The geopolymer composites were produced from silica fly ash (CFA) and waste glass powder (GP), with their composition further modified using graphene and nanosilica. The study investigated materials with innovative compositions that could effectively replace traditional Portland cement-based concrete, whose production significantly contributes to carbon emissions. Leachability was assessed using the tank test method. Among the ten metals analyzed, the geopolymer composites released Ba, Cr, Mo, and Sb. The study demonstrated that the leaching process was primarily controlled by dissolution and diffusion; however, for Ba and Mo, depletion of available ions for leaching was also observed. The potential Ecological Risk Index (PERI) ranged from 21.4 to 34.5 depending on the geopolymer composition. The ecological risk analysis indicated no environmental threat from the geopolymer composites.
Go to article

Bibliography

  1. Abbasi, S. M., Ahmadi, H., Khalaj, G. & Ghasemi, B. (2016). Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes, Ceramics International, 42, 14, pp. 15171–15176. DOI:10.1016/J.CERAMINT.2016.06.080
  2. Bakhshi, N., Sarrafi, A. & Ramezanianpour, A. A. (2019). Immobilization of hexavalent chromium in cement mortar: leaching properties and microstructures, Environmental Science and Pollution Research, 26, 20, pp. 20829–20838. DOI:10.1007/S11356-019-05301-Z/FIGURES/7
  3. Bao, S., Qin, L., Zhang, Y., Luo, Y. & Huang, X. (2021). A combined calcination method for activating mixed shale residue and red mud for preparation of geopolymer, Construction and Building Materials, 297, p. 123789. DOI:10.1016/J.CONBUILDMAT.2021.123789
  4. Baran, A. & Wieczorek, J. (2015). Application of geochemical and ecotoxicity indices for assessment of heavy metals content in soils, Archives of Environmental Protection, 41, 2, pp. 54–63. DOI:10.1515/AEP-2015-0019
  5. Cubukcuoglu, B. & Ouki, S. K. (2019). Comparison of mechanical and leaching behaviours of pulverised fuel ash/low-grade magnesium oxide-cement blended stabilised/solidified baghouse dust, European Journal of Environmental and Civil Engineering, 23, 6, pp. 771–788. DOI:10.1080/19648189.2017.1310140
  6. Faragó, T., Špirová, V., Blažeková, P., Lalinská-Voleková, B., Macek, J., Jurkovič, Ľ., Vítková, M. & Hiller, E. (2023). Environmental and health impacts assessment of long-term naturally-weathered municipal solid waste incineration ashes deposited in soil-old burden in Bratislava city, Slovakia, Heliyon, 9, 3, p. e13605. DOI:10.1016/J.HELIYON.2023.E13605
  7. Hartwich, P. & Vollpracht, A. (2017). Influence of leachate composition on the leaching behaviour of concrete, Cement and Concrete Research, 100, pp. 423–434. DOI:10.1016/J.CEMCONRES.2017.07.002
  8. Hołtra, A. & Zamorska-Wojdyła, D. (2023). Application of individual and integrated pollution indices of trace elements to evaluate the noise barrier impact on the soil environment in Wrocław (Poland), Environmental Science and Pollution Research, 30, 10, pp. 26858–26873. DOI:10.1007/S11356-022-23563-Y/FIGURES/7
  9. Janowska-Renkas, E., Zdrojek, M., Kozioł, M. & Kaliciak-Kownacka, A. (2023). Effect of composition of geopolymer composites containing fly ash and waste glass powder on their durability and resistivity demonstrated in presence of a nanocarbon additive in a form of graphene, Measurement, 211, p. 112616. DOI:10.1016/J.MEASUREMENT.2023.112616
  10. Jaskuła, J., Sojka, M., Fiedler, M. & Wróżyński, R. (2021). Analysis of spatial variability of river bottom sediment pollution with heavy metals and assessment of potential ecological hazard for the Warta river, Poland, Minerals, 11, 3, pp. 1–21. DOI:10.3390/MIN11030327
  11. Ji, Z. & Pei, Y. (2020). Immobilization efficiency and mechanism of metal cations (Cd2+, Pb2+ and Zn2+) and anions (AsO43- and Cr2O72-) in wastes-based geopolymer, Journal of Hazardous Materials, 384, p. DOI:10.1016/J.JHAZMAT.2019.121290
  12. Kazapoe, R. W., Amuah, E. E. Y. & Dankwa, P. (2022). Sources and pollution assessment of trace elements in soils of some selected mining areas of southwestern Ghana, Environmental Technology & Innovation, 26, p. 102329. DOI:10.1016/J.ETI.2022.102329
  13. Kowalik, R., Gawdzik, J. & Gawdzik, B. (2019). Risk Analysis of Accumulation of Heavy Metals from Sewage Sludge in Soil from the Sewage Treatment Plant in Starachowice, Structure and Environment, 11, 4, pp. 287–295. DOI:10.30540/SAE-2019-022
  14. Król, A. (2016). The role of the silica fly ash in sustainable waste management, E3S Web of Conferences, 10, 00049. DOI:10.1051/E3SCONF/20161000049
  15. Król, A. (2020). Mechanisms Accompanying Chromium Release from Concrete, Materials, 13, 8, p. 1891. DOI: 10.3390/MA13081891
  16. Król, A. & Mizerna, K. (2016). Directions of development of research methods in the assessment of leaching of heavy metals from mineral waste, E3S Web of Conferences, 10, p. 00050. DOI:10.1051/e3sconf/20161000050
  17. Król, M., Rożek, P., Chlebda, D. & Mozgawa, W. (2018). Influence of alkali metal cations/type of activator on the structure of alkali-activated fly ash – ATR-FTIR studies, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 198, pp. 33–37. DOI:10.1016/J.SAA.2018.02.067
  18. Kuterasińska-Warwas, J. & Król, A. (2017). Leaching of heavy metals from cementitious composites made of new ternary cements, E3S Web of Conferences, 19, p. 02019. DOI:10.1051/e3sconf/20171902019
  19. Liu, D., Wang, J., Yu, H., Gao, H. & Xu, W. (2021). Evaluating ecological risks and tracking potential factors influencing heavy metals in sediments in an urban river, Environmental Sciences Europe, 33, 1, pp. 1–13. DOI:10.1186/S12302-021-00487-X/FIGURES/6
  20. Movafagh, A., Mansouri, N., Moattar, F. & Vafaeinejad, A. R. (2020). Distribution and Ecological Risk Assessment of Heavy Metals in Roadside Soil along the Hemat Highway of Tehran, Iran, Environment Protection Engineering, 44, 3, pp. 5-17. DOI:10.37190/EPE180301
  21. Müllauer, W., Beddoe, R. E. & Heinz, D. (2015). Leaching behaviour of major and trace elements from concrete: Effect of fly ash and GGBS, Cement and Concrete Composites, 58, pp. 129–139. DOI:10.1016/J.CEMCONCOMP.2015.02.002
  22. Nayak, D. K., Abhilash, P. P., Singh, R., Kumar, R. & Kumar, V. (2022). Fly ash for sustainable construction: A review of fly ash concrete and its beneficial use case studies, Cleaner Materials, 6, p. 100143. DOI:10.1016/J.CLEMA.2022.100143
  23. Overmann, S., Lin, X. & Vollpracht, A. (2021). Investigations on the leaching behavior of fresh concrete – A review, Construction and Building Materials, 272, p. 121390. DOI:10.1016/J.CONBUILDMAT.2020.121390
  24. Phoo-ngernkham, T., Chindaprasirt, P., Sata, V., Hanjitsuwan, S. & Hatanaka, S. (2014). The effect of adding nano-SiO2 and nano-Al2O3 on properties of high calcium fly ash geopolymer cured at ambient temperature, Materials and Design, 55, pp. 58–65. DOI:10.1016/j.matdes.2013.09.049
  25. Rachwał, M., Penkała, M., Rogula-Kozłowska, W., Wawer-Liszka, M., Łukaszek-Chmielewska, A. & Rakowska, J. (2024). Influence of road surface type on the magnetic susceptibility and elemental composition of road dust, Archives of Environmental Protection, 50, 4, pp. 135–146. DOI: 10.24425/AEP.2024.152903
  26. Rozpondek, K. & Rozpondek, R. (2019). The Use of Ecological Risk Indicators to Assess the Degree of Pollution of Bottom Sediments of the Dzierżno Duże Water Reservoir, Engineering and Protection of Environment, 22, 1, pp. 53–62. DOI:10.17512/ios.2019.1.5. (in Polish)
  27. Shamsol, A.’lia S., Apandi, N. M., Zailani, W. W. A., Izwan, K. N. K., Zakaria, M. & Zulkarnain, N. N. (2024). Graphene oxide as carbon-based materials: A review of geopolymer with addition of graphene oxide towards sustainable construction materials, Construction and Building Materials, 411, pp. 134410. DOI:10.1016/J.CONBUILDMAT.2023.134410
  28. Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers, Archives of Environmental Protection, 45, 1, pp. 126–135. DOI:10.24425/AEP.2019.126427
  29. Sobolev, K., Flores, I., Torres-Martinez, L. M., Valdez, P. L., Zarazua, E. & Cuellar, E. L. (2009). Engineering of SiO2 Nanoparticles for Optimal Performance in Nano Cement-Based Materials, Nanotechnology in Construction 3, pp. 139–148. DOI:10.1007/978-3-642-00980-8_18
  30. Sun, Z & Vollpracht, A. (2020). Leaching of monolithic geopolymer mortars, Cement and Concrete Research, 136, p. 106161. DOI:10.1016/J.CEMCONRES.2020.106161
  31. Takahashi, S., Daimon, M. & Sakai, E. (2003). Sorption of CrO42- for cement hydrates and the leaching from cement hydrates after sorption, Proceedings of the 11th International Congress on the Chemistry of Cement “Cement’s Contribution on the Development in the 21st Century,” pp. 2166–2172.
  32. Tan, J., De Vlieger, J., Desomer, P., Cai, J. & Li, J. (2022). Co-disposal of construction and demolition waste (CDW) and municipal solid waste incineration fly ash (MSWI FA) through geopolymer technology, Journal of Cleaner Production, 362, p. 132502. DOI:10.1016/J.JCLEPRO.2022.132502
  33. Tho-In, T., Sata, V., Boonserm, K. & Chindaprasirt, P. (2018). Compressive strength and microstructure analysis of geopolymer paste using waste glass powder and fly ash, Journal of Cleaner Production, 172, pp. 2892–2898. DOI:10.1016/J.JCLEPRO.2017.11.125
  34. Tomczyk, P., Wdowczyk, A., Wiatkowska, B. & Szymańska-Pulikowska, A. (2023). Assessment of heavy metal contamination of agricultural soils in Poland using contamination indicators, Ecological Indicators, 156, p. 111161. DOI:10.1016/J.ECOLIND.2023.111161
  35. Toniolo, N., Rincón, A., Roether, J. A., Ercole, P., Bernardo, E. & Boccaccini, A. R. (2018). Extensive reuse of soda-lime waste glass in fly ash-based geopolymers, Construction and Building Materials, 188, pp. 1077–1084. DOI:10.1016/J.CONBUILDMAT.2018.08.096
  36. Van Der Sloot, H. A. (2000). Comparison of the characteristic leaching behavior of cements using standard (EN 196-1) cement mortar and an assessment of their long-term environmental behavior in construction products during service life and recycling, Cement and Concrete Research, 30, 7, pp. 1079–1096. DOI:10.1016/S0008-8846(00)00287-8
  37. Vollpracht, A. & Brameshuber, W. (2016). Binding and leaching of trace elements in Portland cement pastes, Cement and Concrete Research, 79, pp. 76–92. DOI:10.1016/J.CEMCONRES.2015.08.002
  38. Yandem, G. & Jabłońska-Czapla, M. (2024). Review of indium, gallium, and germanium as emerging contaminants: occurrence, speciation and evaluation of the potential environmental impact, Archives of Environmental Protection, 50, 3, pp. 84–99. DOI:10.24425/AEP.2024.151688
  39. Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A. & Li, S. (2022). Health and environmental effects of heavy metals, Journal of King Saud University - Science, 34, 1, p. 101653. DOI:10.1016/J.JKSUS.2021.101653
Go to article

Authors and Affiliations

Kamila Mizerna
1
ORCID: ORCID
Anna Król
1
Elżbieta Janowska-Renkas
2
Agnieszka Kaliciak-Kownacka
2

  1. Department of Process and Environmental Engineering, Opole University of Technology, Opole, Poland
  2. Department of Building Materials Engineering, Opole University of Technology, Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, a greenhouse experiment was carried out from April to July 2024 to assess the effectiveness of four ornamental plants in removing heavy metals from the polluted soil surrounding the Zenica steel mill in Bosnia and Herzegovina. The selected ornamental plants - blue mink (Ageratum houstonianum Mill.), marigold (Tagetes erecta L.), impatiens (Impatiens walleriana Hook. f.), and begonia (Begonia semperflorens - Cultorum Group) - demonstrated potential for addressing soil contamination. These plants were cultivated in grow bags filled with soil collected from different areas surrounding the Zenica steel mill. The concentrations of heavy metals (Cu, Zn, Pb, Cd, Cr, Mn, and Fe) in both soil and plant samples were analyzed using atomic absorption spectrophotometry. The findings of this study reveal that soils adjacent to the Zenica steel mill are heavilycontaminated with Zn, Cd, and Pb and also contain notable levels of Mn and Fe. The bioaccumulation factor (BAF) and translocation factor (TF) were calculated to determine the potential of the selected ornamental plants to uptake and transport heavy metals from the soil to its aboveground parts. The BAF values for all heavy metals in all studied plant species were consistently below 1, indicating a limited capacity to remove heavy metals from the soil. This limited effectiveness can be attributed, among other factors, to the high pH levels of the tested soils. Despite the limitation, the findings revealed a significant difference in the plants’ capacity to uptake and accumulate heavy metal ions from the examined soils. Among the tested plants, blue mink demonstrated the highest ability to absorb Cu, Pb, Cr and Fe, while the highest concentrations of Zn and Cd were found in begonia
Go to article

Bibliography

  1. Adnan, M., Xiao, B., Ali, M.U., Xiao, P., Zhao, P., Wang, H. & Bibi, S. (2024). Heavy metals pollution from smelting activities: A threat to soil and groundwater. Ecotoxicology and Environmental Safety, 274, 116189. DOI:10.1016/j.ecoenv.2024.116189
  2. Adnan, M., Xiao, B., Xiao, P., Zhao, P., Li, R. & Bibi, S. (2022). Research progress on heavy metals pollution in the soil of smelting sites in China. Toxics, 10(5), 231. DOI:10.3390/toxics10050
  3. Adnan, M., Zhao, P., Xiao, B., Ali, M.U. & Xiao, P. (2025). Heavy metal pollution and source analysis of soils around abandoned Pb/Zn smelting sites: Environmental risks and fractionation analysis. Environmental Technology & Innovation, 38, 104084. DOI:10.1016/j.eti.2025.104084
  4. Alghamdi, S.A. & El-Zohri, M. (2024). Phytoremediation characterization of heavy metals by some native plants at anthropogenic polluted sites in Jeddah, Saudi Arabia. Resources, 13(7), 98. DOI:10.3390/resources13070098
  5. Ali, J., Amna, Mahmood, T., Hayat, H., Afridi, M.S., Ali, F. & Chaudhary, H.J. (2018). Phytoextraction of Cr by maize (Zea mays L.). The role of plant growth promoting endophyte and citric acid under polluted soil. Archives of Environmental Protection, 44(2), pp. 73-82. DOI:10.24425/119705
  6. Bonanno, G., Vymazal, J. & Cirelli, G.L. (2018). Translocation, accumulation and bioindication of trace elements in wetland plants. Science of the Total Environment, 631-632, pp. 252-261. DOI:10.1016/j.scitotenv.2018.03.039
  7. Bosiacki, M., Kleiber, T. & Kaczmarek, J. (2013). Evaluation of suitability of Amaranthus caudatus L. and Ricinus communis L. in phytoextraction of cadmium and lead from contaminated substrates. Archives of Environmental Protection, 39(3), pp. 47-59. DOI:10.2478/aep-2013-0022
  8. Egnér, H., Riehm, H. & Domingo, W.R. (1960). Investigations on soil chemical analysis as a basis of the evaluation of plant nutrient status of soils II. Chemical extraction methods for phosphorus and potassium determination. Kungliga Lantbrukshögskolans Annaler, Sweden, 26, pp. 199-215. (in German)
  9. Ejaz, U., Khan, S.M., Khalid, N., Ahmad, Z., Jehangir, S., Rizvi, F.Z., Lho, L.H., Han, H. & Raposa, A. (2023). Detoxifying the heavy metals: a multipronged study of tolerance strategies against heavy metals toxicity in plants. Frontiers in Plant Science, 14, 1154571. DOI:10.3389/fpls.2023.1154571
  10. Gawroński, S., Łutczyk, G., Szulc, W. & Rutkowska, A. (2022). Urban mining: Phytoextraction of noble and rare earth elements from urban soils. Archives of Environmental Protection, 48(2), pp. 24-33. DOI:10.24425/aep.2022.140763
  11. Hamzah Saleem, M., Usman, K., Rizwan, M., Al Jabri, H. & Alsafran, M. (2023). Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Frontiers in Plant Science, 13, 1033092. DOI:10.3389/fpls.2022.1033092
  12. International Standard ISO (1995). ISO 11466: Soil quality - Extraction of trace elements soluble in aqua regia. Geneva, Switzerland.
  13. International Standard ISO (1998). ISO 11047: Soil quality - Determination of cadmium, chromium, cobalt, copper, lead, manganese, nickel and zinc - Flame and electrothermal atomic absorption spectrometric methods. Geneva, Switzerland.
  14. International Standard ISO (1998). ISO 14235: Soil quality - Determination of organic carbon in soil by sulfochromic oxidation. Geneva, Switzerland.
  15. International Standard ISO (2021). ISO 10390: Soil quality - Determination of pH. Geneva, Switzerland.
  16. Jutsz, A. & Gnida, A. (2015). Mechanisms of stress avoidance and tolerance by plants used in phytoremediation of heavy metals. Archives of Environmental Protection, 41(4), pp. 104-114. DOI:10.1515/aep-2015-0045
  17. Kabata-Pendias A. & Pendias H. (2001). Trace Elements in Soils and Plants. CRC Press, Boca Raton, 2001.
  18. Kastori, R., Petrović, N. & Arsenijević-Maksimović, I. (1997). Heavy Metals in the Environment. Naučni institut za ratarstvo i povrtarstvo, Novi Sad, 1997. (in Serbian).
  19. Kniuipytė, I., Dikšaitytė, A., Praspaliauskas, M., Pedišius, N. & Žaltauskaitė, J. (2023). Oilseed rape (Brassica napus L.) potential to remediate Cd contaminated soil under different soil water content. Journal of Environmental Management, 325, 116627. DOI:10.1016/j.jenvman.2022.116627
  20. Kuang, X., Wang, W., Hu, J., Liu, W. & Zeng, W. (2022). Subcellular distribution and chemical forms of manganese in Daucus carota in relation to its tolerance. Frontiers in Plant Science, 13, 947882. DOI:10.3389/fpls.2022.947882
  21. Lin, H., Wang, Z., Liu, C. & Dong, Y. (2022). Technologies for removing heavy metal from contaminated soils on farmland: A review. Chemosfere, 305, 135457. DOI:10.1016/j.chemosphere.2022.135457
  22. Lisjak, M., Špoljarević, M., Agić, D. & Andrić, L. (2019). Practicum-Plant Physiology. Faculty of Agriculture in Osijek, Osijek, 2019. (in Croatian)
  23. Meng, Y., Xiang, C., Huo, J., Shen, S., Tang, Y., Wu, L. (2023). Toxicity effects of zinc supply on growth revealed by physiological and transcriptomic evidences in sweet potato (Ipomoea batatas (L.) Lam). Scientific Reports, 13, 19203. DOI:10.1038/s41598-023-46504-2
  24. Official Gazette of FBiH (2009). Rulebook on determination of allowable quantities of harmful and hazardous substances in soils of Federation of Bosnia and Herzegovina and methods for their testing. Gazette of the Federation of BiH No. 72/09, Sarajevo, 2009. (in Bosnian).
  25. Ramírez, A., García, G., Werner, O., Navarro‐Pedreño, J. & Ros, R.M. (2021). Implications for phytoremediation of heavy metal contamination of soils and wild plants in the industrial area of Haina, Dominican Republic. Sustainability, 13, 1403. DOI:10.3390/su13031403
  26. Schmidt S.B. & Husted S. (2019). The biochemical properties of manganese in plants. Plants (Basel), 8(10), 381. DOI:10.3390/plants8100381
  27. Verbruggen, N., Hermans, C. & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181(4), pp. 759-776. DOI:10.1111/j.1469-8137.2008.02748.x
  28. Wan, Y., Liu, J., Zhuang, Z., Wang, Q. & Li, H. (2024). Heavy metals in agricultural soils: Sources, influencing factors, and remediation strategies. Toxics, 12(1), 63. DOI:10.3390/toxics12010063
  29. Zhao, P., Adnan, M., Xiao, P., Yang, X., Wang, H., Xiao, B. & Xue, S. (2024). Characterization of soil heavy metals at an abandoned smelting site based on particle size fraction and its implications for remediation strategy. Journal of Central South University, 31, pp. 1076-1091. DOI:10.1007/s11771-024-5646-z
  30. Zhou, M., Zhi, Y., Dai, Y., Lv, J., Li, Y. & Wu, Z. (2020). The detoxification mechanisms of low-accumulating and non-low-accumulating medicinal plants under Cd and Pb stress. RSC Advances, 10, pp. 43882-43893. DOI:10.1039/D0RA08254F
Go to article

Authors and Affiliations

Senad Murtić
1
Adnan Hadžić
1
Adisa Parić
2
Edina Muratović
2
Anis Hasanbegović
3
Fatima Pustahija
4

  1. University of Sarajevo, Faculty of Agriculture and Food Sciences, Department for Plant Physiology, Bosnia and Herzegovina
  2. University of Sarajevo, Faculty of Science, Department for Botany, Bosnia and Herzegovina
  3. National Museum of Bosnia and Herzegovina, Department for Botany, Bosnia and Herzegovina
  4. University of Sarajevo, Faculty of Forestry, Department for Plant Physiology, Bosnia and Herzegovina
Download PDF Download RIS Download Bibtex

Abstract

The development of eco-friendly methods for removing hazardous inorganic and organic contaminants (e.g., metal ions, synthetic dyes) from water systems is of great importance for the health and life of humans and animals. Recently, there has been growing interest in the possibilities of using deep eutectic solvents (DESs) in separation processes aimed at removing various pollutants from aqueous solutions. DESs are typically non-toxic, biodegradable, and can be synthesised using simple methods. Moreover, the components used in DES synthesis, often considered “green” solvents, can be derived from natural sources. DESs are generally recyclable and relatively cheap. This review highlights recent advancements (mainly from 2023–2024) in the application of various DESs for the removal of metal and metalloid ions, as well as synthetic dyes, from aqueous solutions using solvent extraction (SE) and membrane separation (MP). It also includes critical comments on the limitations of current methods and their potential environmental impacts.
Go to article

Bibliography

  1. Abdussalam-Mohammed, W., Ali, A. Q. & Errayes, A. O. (2020). Green Chemistry: principles, applications, and disadvantages. Chemical Methodologies, 4(4), pp. 408-423. DOI:10.33945/SAMI/CHEMM.2020.4.4
  2. Abedpour, H., Moghaddas, J. S., Borhani, M. N. & Borhani, T. N. (2023). Separation of toxic contaminants from water by silica aerogel-based adsorbents: A comprehensive review. Journal of Water Process Engineering, 53, 103676. DOI:10.1016/j.jwpe.2023.103676
  3. Albrektienė-Plačakė, R. & Paliulis, D. (2024) Investigation on applying sapropel for removal of heavy metals (cadmium, chromium, copper, and zinc) from aqueous solutions. Archives of Environmental Protection, 50, 2, pp. 55-64. DOI:10.24425/aep.2024.150552
  4. Alguacil, F. J. & Robla, J. I. (2022). Solvent extraction in the recovery of metals from solutions: entering the third decade of XXI century. Desalination and Water Treatment, 265, pp. 71-93. DOI:10.5004/dwt.2022.28604
  5. Aljumaily, M.M., Ali, N.S., Mahdi, A.E., Alayan, H.M., AlOmar, M., Hameed, M.M., Ismael, B., Alsalhy, Q.F., Alsaadi, M.A., Majdi, H.S. & Mohammed, Z. (2022). Modification of poly(vinylidene fluoride-co-hexafluoropropylene) membranes with DES-functionalized carbon nanospheres for removal of methyl orange by membrane distillation. Water, 14, 9, 1396. DOI:10.3390/w14091396
  6. Alqahtani, A. S. (2024) Indisputable roles of different ionic liquids, deep eutectic solvents and nanomaterials in green chemistry for sustainable organic synthesis. Journal of Molecular Liquids, 399, 124469. DOI:10.1016/j.molliq.2024.124469
  7. Bayabil, H. K., Teshome, F. T., & Li, Y. C. (2022). Emerging Contaminants in Soil and Water. Frontiers in Environmental Science, 10, 873499. DOI: 10.3389/fenvs.2022.873499
  8. Benkhaya, S., M’rabet, S. & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. DOI:10.1016/j.inochem.2020.107891
  9. Białowąs, M., Kończak, B., Chałupnik, S. & Kalka J. (2024). Analysis of the feasibility of using biopolymers of different viscosities as immobilization carriers for laccase in synthetic dye removal. Archives of Environmental Protection, 50, 1, pp. 19-34. DOI:10.24425/aep.2024.149429
  10. Blanco, L., Martínez-Rico, O., Domínguez, Á. & González, B. (2023). Removal of Acid Blue 80 from aqueous solutions using chitosan-based beads modified with choline chloride:urea deep eutectic solvent and FeO. Water Resources and Industry, 29, 100195. DOI:10.1016/j.wri.2022.100195
  11. Blano, L.V., Sas, O.G., Sánchez, P.B., Santiago, Á.D. & de Prado, B.G. (2022). Congo red recovery from water using green extraction solvents. Water Resources and Industry, 27, 100170. DOI:10.1016/j.wri.2021.100170
  12. Bratovcic, A. (2023). Recent achievements in photocatalytic degradation of organic water contaminants. Kemija u Industriji, 72, pp. 573−583. DOI:10.15255/KUI.2022.058
  13. Chakraborty, G., Bhattarai, A. & De, R. (2022). Polyelectrolyte – Dye interactions: An overview. Polymers, 14, 598. DOI:10.3390/polym14030598
  14. Chavan, R.B. Handbook of textile and industrial dyeing. Principles, Processes and Types of Dyes. 16 – Environmentally friendly dyes. Volume 1 in Woodhead Publishing Series in Textiles. 2011, pp. 515-561. DOI:10.1533/9780857093974
  15. Chemat, F., Vian, M.A., Fabiano-Tixier, A-S., Nutrizio, M., Jambrak, A.R., Munekata, P.E.S., Lorenzo, J.M., Barba, F.J., Binello, A. & Cravotto, G. (2020). A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry, 22, 2325, pp. 2325-2353. DOI:10.1039/C9GC03878G
  16. Chen, K., Dong, H., Ni, Y., Qian, Y., Wang, Y. & Xu, K. (2024). Selective extraction of anionic and cationic dyes using tailored hydrophobic deep eutectic solvents. Talanta, 268, 1, 125312. DOI:10.1016/j.talanta.2023.125312
  17. Crema, A. P. S., Schaeffer, N., Bastos, H., Silva, L.P., Abranches, D. O., Passos, H., Hespanhol, M. C. & Coutinho, J.A. P. (2023). New family of type V eutectic solvents based on 1,10-phenanthroline and their application in metal extraction. Hydrometallurgy, 215, 105971. DOI: 10.1016/j.hydromet.2022.105971
  18. Cruz, K.A.M.L., Rocha, F.R.P. & Hespanhol, M.C. (2024). Greener route for recovery of high-purity lanthanides from the waste of nickel metal hydride battery using a hydrophobic deep eutectic solvent. ACS Sustainable Chemistry Engineering, 12, 16, 6169–6181. DOI: 10.1021/acssuschemeng.3c07784
  19. Date, M. & Jaspal, D. (2024). Dyes and heavy metals: removal, recovery and wastewater reuse - a review. Sustainable Water Resources Management, 10, 90. DOI: 10.1007/s40899-024-01073-8
  20. Duque, M., Snajuan, A., Bou-Ali, M.M., Alonso, R.M., Campanero, M.A. (2023). Physicochemical characterization of hydrophobic type III and type V deep eutectic solvents based on carboxylic acids. Journal of Molecular Liquids, 392, 1, 123431. DOI:10.1016/j.molliq.2023.123431
  21. Ealias, A. M., Meda, G. & Tanzil, K. (2024). Recent progress in sustainable treatment technologies for the removal of emerging contaminants from wastewater: A review on occurrence, global status and impact on biota. Reviews of Environmental Contamination and Toxicology, 262, 16. DOI: 10.1007/s44169-024-00067-z
  22. El Achkar, T., Greige-Gerges, H. & Fourmentin, S. (2021). Basics and properties of deep eutectic solvents: a review. Environmental Chemistry Letters, 19, pp. 3397–3408. DOI: 10.1007/s10311-021-01225-8
  23. Feng, F., Wang, M., Zhang, J., Ding, H., Yu, L., Guo, W., Guo, L., Liang, Q., Zhang, Q., Lu, C. & Li, X. (2024). Hydrogen bonding-based deep eutectic solvents for choline chloride/sulfamide and its application in the recycling of precious metals. Journal of Environmental Chemical Engineering, 12(5), 113611. DOI: 10.1016/j.jece.2024.113611.
  24. Hassan, M.F., Khan, A.S., Akbar, N., Ibrahim, T.H., Khamis, M.I., Jumean, F.H., Siddiqui, R., Khan, N.A. & Yasir, N. (2022). Efficient extraction of methylene blue from aqueous solution using phosphine-based deep eutectic solvents with carboxylic acid. Processes, 10, 2151. DOI:10.3390/pr10102152
  25. Haq, H.U., Wali, A., Safi, F., Arain, M.B., Kong, L. & Boczkaj, G. (2023). Natural deep eutectic solvent based ultrasound assisted liquid-liquid micro-extraction method for methyl violet dye determination in contaminated river water. Water Resources and Industry, 29, 100210. DOI:10.1016/j.wri.2023.100210
  26. Hussain, Z., Chang, N., Sun, J., Xiang, S., Ayaz, T., Zhang, H. & Wang, H. (2022). Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. Journal of Hazardous Materials, 422, 126778. DOI:10.1016/j.jhazmat.2021.126778
  27. Ilame, T. & Ghosh, A. (2022). The promising applications of nanoparticles for synthetic dyes removal from wastewater: recent review. Management of Environmental Quality, 33(2), pp. 451-477. DOI:10.1108/MEQ-07-2021-0179
  28. Jeong, C., Ansari, M. H., Anwer, A. H., Kim S. H., Nasar, A., Shoeb, M. & Mashkoor, F. (2023). A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Separation and Purification Technology, 305, 122416. DOI:10.1016/j.seppur.2022.122416
  29. Kaczorowska, M.A. (2022). The use of polymer inclusion membranes for the removal of metal ions from aqueous solutions—the latest achievements and potential industrial applications: a review. Membranes, 12, 1135. DOI:10.3390/membranes12111135
  30. Kaczorowska, M. A., Bożejewicz, D. & Witt, K. (2023a). Application of a deep eutectic mixture and ionic liquid as carriers in polymer adsorptive membranes for removal of copper(II) and zinc(II) ions from computer scrap leachates. Desalination and Water Treatment, 316, pp. 505-513. DOI:10.5004/dwt.2023.30166
  31. Kaczorowska, M. A., Bożejewicz, D. & Witt, K. (2023b). The application of polymer inclusion membranes for the removal of emerging contaminants and synthetic dyes from aqueous solutions - A mini review. Membranes, 13, 132. DOI:10.3390/membranes1302013
  32. Khodabandeloo, F., Shahsavarifar, S., Nayebi, B. Niavol, K.P., Nayebi, B., Varma, R.S., Cha, J.H., Jang, H.W., Kim, D. & Shokouhimehr, M. (2023). Application of nanostructured semiconductor photocatalysts for the decontamination of assorted pollutants from wastewater. Inorganic Chemistry Communication, 157, 111357. DOI:10.1016/j.inoche.2023.111357
  33. Kizil, N., Erbilgin, D.E., Yola, M.L. & Soylak, M. (2024). An environmentally friendly hydrophobic deep eutectic solvent dispersive liquid liquid microextraction for spectrophotometric analysis of indigo carmine (E132). Optical and Quantum Electronics, 56, 341. DOI:10.1007/s11082-023-05964-6
  34. Kumar, G., Kumar, K. & Bharti, A. (2024). Quantum chemistry-based approach for density prediction of non-ionic hydrophobic eutectic solvents. Journal of Solution Chemistry, 53, pp.1195–1210. DOI:10.1007/s10953-024-01372-w
  35. Kunasekaran, K., Harikumar, N. S. & Ramalingam, A. (2024). Volumetric investigation of Cu(II) And Hg(II) aqueous mixtures with {tetrabutylammonium bromide plus glycerol (1:3)} deep eutectic solvents and extraction performances of {tetrabutylammonium bromide plus capric acid/oleic acid} over divalent (Cu and Hg) heavy metals. Journal of Chemical & Engineering Data, 69(3), pp. 1188-1218. DOI:10.1021/acs.jced.3c00770
  36. Kurtulbaş, E., Ciğeroğlu, Z., Şahin, S., El Messaoudi, N. & Mehmeti V. (2024). Monte Carlo, molecular dynamic, and experimental studies of the removal of malachite green using g-C3N4/ZnO/Chitosan nanocomposite in the presence of a deep eutectic solvent. International Journal of Biological Macromolecules, 274, 1, 133378. DOI:10.1016/j.ijbiomac.2024.133378
  37. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials. Archives of Environmental Protection, 49, 1 pp. 47–56. DOI 10.24425/aep.2023.144736
  38. Liu, J., Chen, B., Huang, Y., Cao, Y., Chen, J., Wang, L., Liu, Y. & Fan, Y. (2024). Efficient and clean treatment of indium-bearing zinc ferrite: A new approach using a water-regulated deep eutectic solvent. Separation and Purification Technology, 347, 127576. DOI:10.1016/j.seppur.2024.127576
  39. Liu, L., Zhu, G., Huang, Q., Yin, C., Jiang, X., Yang, X. & Xie, Q. (2021). Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent. Journal of Molecular Liquids, 343, 117670. DOI:10.1016/j.molliq.2021.117670.
  40. Mafakheri, N., Shamsipur, M. & Babajani, N. (2024). Development of a dispersive liquid–liquid microextraction procedure based on a natural deep eutectic solvent for ligand-less preconcentration and determination of heavy metals from water and food samples, Microchemical Journal, 199, 110010. DOI:10.1016/j.microc.2024.110010
  41. Majidi, E. & Bakhshi, H. (2024). Hydrophobic deep eutectic solvents characterization and performance for efficient removal of heavy metals from aqueous media, Journal of Water Process Engineering, 57, 104680. DOI:10.1016/j.jwpe.2023.104680.
  42. Martín, M. I., García-Díaz, I. & López, F. A. (2023). Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery. Minerals Engineering, 203, 108306. DOI:10.1016/j.mineng.2023.108306
  43. Martínez-Rico, Ó., Asla, A., Domínguez, Á. & González, B. (2024). Reversible dye extraction from aqueous matrices using ammonium salt-based deep eutectic solvents. Separation and Purification Technology, 335, 126208. DOI:10.1016/j.seppur.2023.126208
  44. Moody, V. & Needles, H.L. (2004). Tufted Carpet. Textile fibers, dyes, finishes, and processes. William Andrew, Norwich, pp. 155-175.
  45. Nejrotti, S., Antenucci, A., Pontremoli, C., Gontrani, L., Barbero, N., Carbone, M. & Bonomo, M. (2022). Critical assessment of the sustainability of deep eutectic solvents: A case study on six choline chloride-based mixtures. ACS Omega, 7, 51, pp. 47449–47461. DOI:10.1021/acsomega.2c06140
  46. Nithya, R., Thirunavukkarasu, A., Sathya, A.B. & Sivashankar, R. (2021). Magnetic materials and magnetic separation of dyes from aqueous solutions: a review. Environmental Chemistry Letters, 19, pp. 1275-1294. DOI:10.1007/s10311-020-01149-9
  47. Ola, P. D. & Matsumoto, M. (2024). Extraction of Au(III), Pt(IV), and Pd(II) from aqueous media with deep eutectic solvent dissolved in n-heptane as extractant. Indonesian Journal of Chemistry, 23, 6, pp.1735-1741. DOI:10.22146/ijc.80862
  48. Omar, K.A. & Sadeghi, R. (2022). Hydrophobic deep eutectic solvents: thermo-physical characteristic and their application in liquid-liquid extraction. Journal of the Iranian Chemical Society, 19, pp. 3529-3537. DOI:10.1007/s13738-022-02547-2
  49. Patel, D., Suthar, K. J., Balsora, H. K., Patel, D., Panda, S. R. & Bhavsar, N. (2024). Estimation of density and viscosity of deep eutectic solvents: Experimental and machine learning approach. Asia-Pacific Journal of Chemical Engineering, e3151. DOI:10.1002/apj.3151
  50. Prabhune, A. & Dey, R. (2023). Green and sustainable solvents of the future: Deep eutectic solvents. Journal of Molecular Liquids, 379, 121676. DOI:10.1016/j.molliq.2023.121676.
  51. Rao, H.S.P. (2023). Deep eutectic solvents. Resonance, 28, pp. 1865–1874. DOI:10.1007/s12045-023-1724-z
  52. Santana-Mayor, A., Rodríguez-Ramos, R., Herrera-Herrera, A.V., Socas-Rodríguez, B., & Rodríguez-Delgado, M.A. (2021). Deep eutectic solvents. The new generation of green solvents in analytical chemistry. Trends in Analytical Chemistry, 134, 116108. DOI:10.1016/j.trac.2020.116108.
  53. Santhosh, K.N., Samage, A., Mahadevaprasad, K.N., Aditya, D.S., Jayapandi, S., Yoon, H. & Nataraj, S.K. (2024). Harnessing deep eutectic solvents for upcycling waste membranes into high-performance adsorbents and energy storage materials. Chemical Engineering Journal, 484, 149747. DOI:10.1016/j.cej.2024.149747
  54. Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y. & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review, Journal of Environmental Chemical Engineering, 9, 4, 105688. DOI:10.1016/j.jece.2021.105688.
  55. Shuping, C., Zhihan, Z., Dong, W., Wenjing, Z., Tao, Q., Zhi, W., Wanhai, X., Yong, L. & Guobiao, L. (2025). Selective leaching and recovery of rare earth from NdFeB waste through a superior selective and stable deep eutectic solvent. Separation and Purification Technology, Part B, 353, 128498. DOI:10.1016/j.seppur.2024.128498.
  56. Słupek, E., Makoś, P. & Gębicki, J. (2020). Deodorization of model biogas by means of novel non-ionic deep eutectic solvent. Archives of Environmental Protection, 46, 1, pp. 41–46. DOI:10.24425/aep.2020.132524
  57. Sriram, G., Bendre, A., Mariappan, E., Altalhi, T., Kigga, M., Ching, Y.C., Jung, H-Y., Bhaduri, B. & Kurkuri, M. (2022). Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism-a review. Sustainable Materials and Technologies, 31, 300378. DOI:10.1016/j.susmat.2021.e00378
  58. Srivastav, A. L., Patel, N., Rani, L., Kumar, P., Dutt, I., Maddodi, B. S. & Chaudhary, V. K. (2024). Sustainable options for fertilizer management in agriculture to prevent water contamination: a review. Environment, Development and Sustainability, 26, pp. 8303–8327. DOI:10.1007/s10668-023-03117-z
  59. Viyanni, P.M. & Sethuraman, M.G. (2024). Electrodeposition of NiCo on stainless steel substrate using deep eutectic solvent for efficient hydrogen evolution and methanol oxidation reactions. Journal of Electroanalytical Chemistry, 967, 118471. DOI:10.1016/j.jelechem.2024.118471
  60. Wang, B., Wang, Y. & Xu, T. (2023). Recent advances in the selective transport and recovery of metal ions using polymer inclusion membranes. Advanced Materials Technologies, 8, 22, 2300829. DOI:10.1002/admt.202300829
  61. Wang, C. & Hua, E. (2024). Extraction of metal ions using novel deep eutectic solvents with chelating amine. Journal of Solution Chemistry, 53, pp. 1340–1352. DOI:10.1007/s10953-024-01378-4
  62. Yasir, N., Khan, A.S., Akbar, N., Hassan, M.F., Ibrahim, T.H., Khamis, M., Siddiqui, R., Khan, N.A. & Nancarrow, P. (2022). Amine-based deep eutectic solvents for alizarin extraction from aqueous media. Processes, 10, 794. DOI:10.3390/pr10040794
  63. Zahid, M., Ahmad, H., Drioli, E., Rehan, Z.A., Rashid, A., Akram, S. & Khalid, T. (2021). Role of polymeric nanocomposite membranes for the removal of textile dyes from wastewater. Aquananotechnology, Application of Nanomaterials for Water Purification, pp. 91-103. DOI:10.1016/B978-0-12-821141-0.00006-9
  64. Zhang, H., Zheng, Y., Wang, H. & Chang, N. (2024). Preparation of starch-based adsorbing-flocculating bifunctional material St-A/F and its removal of active, direct and disperse dyes from textile printing and dyeing wastewater. Polymer Bulletin, 81, pp. 2777-2800. DOI:10.1007/s00289-023-04864-9
  65. Zhao, Q., Wu, F., Shih, A. A., Fung, C. K., Gao, P. Y. & Liu, M. X. (2024). Enhancing separation of Y(III) from Sr(II) using tributyl phosphate in a novel deep eutectic solvent media. The American Institute of Chemical Engineers Journal, e18552. DOI:10.1002/aic.18552
Go to article

Authors and Affiliations

Małgorzata A. Kaczorowska
1
ORCID: ORCID
Daria Bożejewicz
1
ORCID: ORCID

  1. Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland
Download PDF Download RIS Download Bibtex

Abstract

Water bodies contaminated with heavy metals have generated significant concern worldwide due to their toxicity, persistence, bioaccumulation, and non-biodegradability. Among these pollutants is Pb (II), which enters water sources primarily as a result of anthropogenic activities. Prolonged exposure to this contaminant can cause neurological disorders, as well as respiratory and urinary issues. This research aims to model an industrial-scale packed column using Computer-Aided Process Engineering (CAPE) to remove Pb (II) from an aqueous solution, using Theobroma cacao L. as bioadsorbent. Using Aspen Adsorption, several simulations were bperformed on adsorption columns with varying configurations at an industrial scale, evaluating the parametric sensitivity to bed height, inlet flow rate, and initial concentration. The results showed that the simulated adsorption columns achieved removal efficiencies of up to 99%. The optimal simulation conditions for the column simulation included a bed height of 5 m, an initial concentration of 3000 mg/L, and an inlet flow rate of 50 m3/day. It was observed that increasing the inlet flow rate reduced the breakthrough and saturation times of the process, while increasing the bed height extended these times. These findings demonstrate the potential of computational tools as valuable alternatives for predicting the performance of adsorption columns packed with biomass.
Go to article

Bibliography

  1. Abdul Rahim, A. R., Mohsin, H. M., Thanabalan, M., Rabat, N. E., Saman, N., Mat, H. & Johari, K. (2020). Effective carbonaceous desiccated coconut waste adsorbent for application of heavy metal uptakes by adsorption: Equilibrium, kinetic and thermodynamics analysis. Biomass and Bioenergy, 142, 105805. DOI:10.1016/J.BIOMBIOE.2020.105805
  2. Adegoke, K. A., Akinnawo, S. O., Ajala, O. A., Adebusuyi, T. A., Maxakato, N. W. & Bello, O. S. (2022). Progress and challenges in batch and optimization studies on the adsorptive removal of heavy metals using modified biomass-based adsorbents. Bioresource Technology Reports, 19, 101115. DOI:10.1016/J.BITEB.2022.101115
  3. Agarwal, A., Upadhyay, U., Sreedhar, I. & Anitha, K. L. (2022). Simulation studies of Cu(II) removal from aqueous solution using olive stone. Cleaner Materials, 5, 100128. DOI:10.1016/j.clema.2022.100128
  4. Amini, M., Afyuni, M., Khademi, H., Abbaspour, K. C. & Schulin, R. (2005). Mapping risk of cadmium and lead contamination to human health in soils of Central Iran. Science of The Total Environment, 347(1–3), pp. 64–77. DOI:10.1016/J.SCITOTENV.2004.12.015
  5. Bahrun, M. H. V., Kamin, Z., Anisuzzaman, S. M. & Bono, A. (2021). Assessment of adsorbent for removing lead (pb) ion in an industrial-scaled packed bed column. Journal of Engineering Science and Technology, 16(2), pp. 1213–1231.
  6. Balali-Mood, M., Naseri, K., Tahergorabi, Z., Khazdair, M. R. & Sadeghi, M. (2021). Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Frontiers in Pharmacology, 12, 643972. DOI:10.3389/FPHAR.2021.643972/BIBTEX
  7. Benyahia, F. & O’Neill, K. E. (2005). Enhanced voidage correlations for packed beds of various particle shapes and sizes. Particulate Science and Technology, 23(2), pp. 169–177. DOI:10.1080/02726350590922242
  8. Chakraborty, R., Asthana, A., Singh, A. K., Jain, B. & Susan, A. B. H. (2022). Adsorption of heavy metal ions by various low-cost adsorbents: a review. International Journal of Environmental Analytical Chemistry, 102(2), pp. 342–379. DOI:10.1080/03067319.2020.1722811
  9. Dixon, A. G. (1988). Correlations for wall and particle shape effects on fixed bed bulk voidage. The Canadian Journal of Chemical Engineering, 66(5), pp. 705–708. DOI:10.1002/cjce.5450660501
  10. Fran Mansa, R., Osong Patrick, A., Kumaresan, S. & Ming Ling, T. (2021). Simulation of Lead Removal Using Palm Kernel Shell Activated Carbon in a Packed Bed Column. Easychair, 2–15.
  11. Gündüz Han, D., Erdem, K. & Midilli, A. (2023). Investigation of hydrogen production via waste plastic gasification in a fluidized bed reactor using Aspen Plus. International Journal of Hydrogen Energy, 48(99), pp. 39315–39329. DOI:10.1016/J.IJHYDENE.2023.07.038
  12. Hu, X., Wang, B., Yan, G. & Ge, B. (2022). Simultaneous removal of phenol and Cu(II) from wastewater by tallow dihydroxyethyl betaine modified bentonite. Archives of Environmental Protection, 48(3), pp. 37–47. DOI:10.24425/AEP.2022.142688
  13. Koua, B. K., Koffi, P. M. E. & Gbaha, P. (2019). Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans. Journal of the Saudi Society of Agricultural Sciences, 18(1), pp. 72–82. DOI:10.1016/j.jssas.2017.01.002
  14. Lubiano, M. L. R. M., Manacup, C. V. L., Soriano, A. N. & Rubi, R. V. C. (2023). Continuous Biosorption of Pb2+ with Bamboo Shoots (Bambusa spp.) using Aspen Adsorption Process Simulation Software. ASEAN Journal of Chemical Engineering, 23(2), pp. 153–166. DOI:10.22146/AJCHE.77314
  15. Mohamed, R. M., Hashim, N., Abdullah, S., Abdullah, N., Mohamed, A., Asshaary Daud, M. A. & Aidil Muzakkar, K. F. (2020). Adsorption of Heavy Metals on Banana Peel Bioadsorbent. Journal of Physics: Conference Series, 1532(1), 012014. DOI:10.1088/1742-6596/1532/1/012014
  16. Murthy, S., Bali, G. & S.K, S. (2012). Lead biosorption by a bacterium isolated from industrial effluents International Journal of Microbiology Research. International Journal of Microbiology Research, 4(3), pp. 196–200.
  17. Nikam, S., Mandal, D. & Dabhade, P. (2022). LDF based parametric optimization to model fluidized bed adsorption of trichloroethylene on activated carbon particles. Particuology, 65, pp. 72–92. DOI:10.1016/J.PARTIC.2021.05.012
  18. Raj, K. & Das, A. P. (2023). Lead pollution: Impact on environment and human health and approach for a sustainable solution. Environmental Chemistry and Ecotoxicology, 5, pp. 79–85. DOI:10.1016/J.ENCECO.2023.02.001
  19. Sánchez, A. P., Sánchez, E. J. P. & Silva, R. M. S. (2019). Simulation of the acrylic acid production process through catalytic oxidation of gaseous propylene using ChemCAD® simulator. Ingeniare, 27(1), pp. 142–150. DOI:10.4067/S0718-33052019000100142
  20. Soriano, A. N., Orfiana, O. N., Pangon, M. B. J., Nieva, A. D. & Adornado, A. P. (2017). Simulated Biosorption of Cd(II) and Cu(II) in Single and Binary Metal Systems by Water Hyacinth (Eichhornia crassipes) using Aspen Adsorption. ASEAN Journal of Chemical Engineering, 16(2), pp. 21–43. DOI:10.22146/AJCHE.49892
  21. Tejada-Tovar, C., López-Cantillo, K., Vidales-Hernández, K., Villabona-Ortiz, A. & Acevedo-Correa, D. (2018). Kinetics and Bioadsortion Equilibrium of Lead and Cadmium in Batch Systems with Cocoa Shell (Theobroma Cacao L.). Contemporary Engineering Sciences, 11(23), pp. 1111–1120. DOI:10.12988/ces.2018.83100
  22. Tejada-Tovar, C., Villabona-Ortíz, A. & González-Delgado, Á. (2022). Adsorption Study of Continuous Heavy Metal Ions (Pb2+, Cd2+, Ni2+) Removal Using Cocoa (Theobroma cacao L.) Pod Husks. Materials, 15(19), 6937. DOI:10.3390/MA15196937
  23. Upadhyay, U., Gupta, S., Agarwal, A., Sreedhar, I. & Anitha, K. L. (2021). Process Optimization at an Industrial Scale in the adsorptive removal of Cd2+ ions using Dolochar via Response Surface Methodology. Researchsquare, 1–28. DOI:10.21203/RS.3.RS-811892/V1
  24. Vaiškūnaitė, R. (2024). Research of batch and fixed-bed column adsorption for phosphorus removal from wastewater using sewage sludge biochar. Archives of Environmental Protection, 50, pp. 72–81. DOI:10.24425/AEP.2024.152897
  25. Villabona-Ortíz, A., Tejada-Tovar, C., Ortega-Toro, R., Peña-Romero, K. & Botello-Urbiñez, C. (2022). Impact of temperature, bed height, and particle size on Ni(II) removal in a continuous system: Modelling the break curve. Journal of Water and Land Development, 52, pp. 257–264. DOI:10.24425/JWLD.2022.140397
  26. Yogeshwaran, V. & Priya, A. K. (2021). Desalination and Water Treatment Experimental studies on the removal of heavy metal ion concentration using sugarcane bagasse in batch adsorption process Experimental studies on the removal of heavy metal ion concentration using sugarcane bagasse in batch. Desalination Water Treat, 224, pp. 256–272. DOI:10.5004/dwt.2021.27160
  27. Zhang, Y. P., Adi, V. S. K., Huang, H. L., Lin, H. P. & Huang, Z. H. (2019). Adsorption of metal ions with biochars derived from biomass wastes in a fixed column: Adsorption isotherm and process simulation. Journal of Industrial and Engineering Chemistry, 76, pp. 240–244. DOI:10.1016/j.jiec.2019.03.046
  28. Znad, H., Awual, M. R. & Martini, S. (2022). The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater. Molecules, 27(4), 1275. DOI:10.3390/MOLECULES27041275
Go to article

Authors and Affiliations

Candelaria Nahir Tejada Tovar
1
ORCID: ORCID
Ángel Villabona Ortiz
1
ORCID: ORCID
Angel Dario Gonzalez Delgado
1
ORCID: ORCID

  1. Universidad de Cartagena, Colombia
Download PDF Download RIS Download Bibtex

Abstract

The need to import phosphorus raw materials for fertilization in Europe and the increasing amount of waste have driven the search for alternative phosphorus sources. One such waste material is sodium-potassium phosphate waste generated during polyol production. In addition, ensuring an adequate food supply remains a critical challenge, with fertilizers playing a key role. Due to the increase in meat consumption, the attractiveness of growing feed corn is increasing, given its high yield potential and rich composition. The article examines the effect of suspension fertilizers derived from polyol production waste on the micronutrient content of corn intended for green fodder. In a 3-year field study, the impact of the waste-derived phosphorus source was compared with a commercial granular phosphorus fertilizer, Fosdar 40. Additionally, the composition of suspension fertilizers was assessed, including those containing only basic nutrients (NPK) and those enriched with secondary nutrients (S, Mg) and micronutrients (Zn, Mn, B). The results confirmed the effectiveness of the tested suspension fertilizers. The micronutrient content in the dry matter of maize was comparable to that of the control treatment fertilized with Fosdar 40.two-step method.
Go to article

Bibliography

  1. Abdel Latef, A. A. H., Zaid, A., Abo-Baker, A. B. A. E., Salem, W. & Abu Alhmad, M. F. (2020). Mitigation of copper stress in maize by inoculation with paenibacillus polymyxa and bacillus circulans. Plants, 9, 11, pp. 1–18. DOI:10.3390/plants9111513
  2. Baljeet, Kumar, S., Singh, M., Meena, B. L., Meena, V. K., Onte, S. & Bhattchargee, S. (2020). Yield and qualitative evaluation of fodder maize ( Zea mays L.) under potassium and zinc based integrated nutrient management . Indian Journal of Animal Nutrition, 37, 3, 235. DOI:10.5958/2231-6744.2020.00037.7
  3. Bhaumik, S., . R., Kumar, S., Fayaz, S., Choudhary, M., Narender, K. & Sharma, S. (2023). Impact of Nutrients on the Development and Yield of Fodder Maize (Zea mays L.): A Review. Agricultural Reviews, Of, 1–7. DOI:10.18805/ag.r-2631
  4. Bogusz, P. (2022). The Possibility of Using Waste Phosphates from the Production of Polyols for Fertilizing Purposes. Molecules, 27, 17, 5632. DOI:10.3390/molecules27175632
  5. Bogusz, P., Brodowska, M. S. & Muszyński, P. (2024). The Impact of Suspension Fertilizers Based on Waste Phosphorus Salts from Polyol Production on the Content of Macronutrients in Maize Grown for Green Fodder. Agronomy, 14, 9. DOI:10.3390/agronomy14051054
  6. Bogusz, P., Brodowska, M. S. & Rusek, P. (2024). The Impact of Suspension Fertilizers Based on Waste Phosphorus Salts from Polyol Production on the Yield of Maize Intended for Green Fodder. Agronomy, 14, 5. DOI:10.3390/agronomy14051054
  7. Bogusz, P., Rusek, P. & Brodowska, M. S. (2022). Suspension Fertilizers Based on Waste Phosphates from the Production of Polyols. Molecules, 27, 22. DOI:10.3390/molecules27227916
  8. Burkhead, J. L., Gogolin Reynolds, K. A., Abdel-Ghany, S. E., Cohu, C. M. & Pilon, M. (2009). Copper homeostasis. New Phytologist, 182, 4, pp. 799–816. DOI:10.1111/j.1469-8137.2009.02846.x
  9. Cakmak, I. (2008). Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil, 302, 1–2) pp. 1–17. DOI:10.1007/s11104-007-9466-3
  10. Conley, S. (2011). Proceedings of the 2011 Wisconsin Crop Management Conference. Management, 50(January).
  11. Courbet, G., Gallardo, K., Vigani, G., Brunel-Muguet, S., Trouverie, J., Salon, C. & Ourry, A. (2019). Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants. Journal of Experimental Botany, 70, 16, pp. 4183–4196. DOI:10.1093/jxb/erz214
  12. El-Azab, M. E. (2015). Increasing Zn ratio in a compound foliar NPK fertilizer in relation to growth, yield and quality of corn plant. Journal of Innovations in Pharmaceutical and Biological Sciences, 451–468. https://jipbs.com/index.php/journal/article/view/86
  13. Farshid Aref. (2012). Manganese, iron and copper contents in leaves of maize plants (Zea mays L.) grown with different boron and zinc micronutrients. African Journal of Biotechnology, 11, 4, pp. 896–903. DOI:10.5897/ajb11.165
  14. Galanti, G.-A. (2014). Chapter 1: Basic Concepts. Caring for Patients from Different Cultures, 1–26. DOI:10.9783/9780812203479.1
  15. Kalashnikov, N. P., Tikhonchuk, P. V. & Fokin, S. A. (2020). The influence of micronutrients on the productivity of corn during cultivation on green mass in the southern zone of Amur region. IOP Conference Series: Earth and Environmental Science, 547, 1. DOI:10.1088/1755-1315/547/1/012043
  16. Kashyap, S., Kumar, R., Ram, H., Kumar, A., Basak, N., Sheoran, P., Bhatacharjee, S., Biswal, B., Ali, G., Kumar, B., Bhakuni, K., Hindoriya, P. S., Birbal, P. S. & Min, D. (2023). Quantitative and Qualitative Response of Fodder Maize to Use of Bulk and Nano-fertilizers in North Western Plains of India. Agronomy, 13, 7, pp. 1–15. DOI:10.3390/agronomy13071889
  17. Kobayashi, T. & Nishizawa, N. K. (2012). Iron uptake, translocation, and regulation in higher plants. Annual Review of Plant Biology, 63, pp. 131–152. DOI:10.1146/annurev-arplant-042811-105522
  18. Kumar, R., Singh, M., Meena, B. S., Kumar, S., Yadav, M. R., Parihar, C. M., Ram, H., Meena, R. K., Meena, V. K. & Kumar, U. (2017). Quality characteristics and nutrient yield of fodder maize (Zea mays) as influenced by seeding density and nutrient levels in Indo-Gangetic Plains. Indian Journal of Agricultural Sciences, 87, 9, pp. 1203–1208. DOI:10.56093/ijas.v87i9.74205
  19. McCall, K. A., Huang, C. C. & Fierke, C. A. (2000). Function and mechanism of zinc metalloenzymes. Journal of Nutrition, 130 (5 SUPPL.), 1437S-1446S. DOI:10.1093/jn/130.5.1437s
  20. Motesharezadeh, B., Chaab, A., Savaghebi, G. R. & Motesharezadeh, B. (2011). Differences in the Zinc Efficiency Among and Within Maize Cultivars in a Calcareous Soil. Asian Journal of Agricultural Sciences, 3, 1, pp. 26–31. https://www.researchgate.net/publication/49605104
  21. Murdock, L. & Howe, P. (2001). Zinc Fertilizer Rates and Mehlich III Soil Test Levels for Corn. 2–4.
  22. Ramakrishna, C. H., Lata, A. M., Murali, B., Madhavi, A. & Venkateswarlu, M. (2022). Yield and silage quality of fodder maize (Zea mays L.) as influenced by zinc fertilization. 11(5), 1799–1802. https://www.thepharmajournal.com/archives/2022/vol11issue5/PartT/11-5-141-892.pdf
  23. Services, C. & Division, A. (2009). Reference Sufficiency Ranges for Plant Analysis in the Southern Region (Vol. 1040, Issue 919).
  24. Sewhag, M., Devi, U., Hooda, V., Kharor, N. & Nagora, M. (2022). Agronomic Fortification Through Zinc and Iron Application: a Viable Option To Improve the Productivity of Fodder Maize. Forage Res, 47,4, pp. 470–475. http://forageresearch.in
  25. Shukla, U. C. & Mukhi, A. K. (1985). Ameliorative role of zinc on maize growth (Zea mays L.) under salt-affected soil conditions. Plant and Soil, 87, 3, pp. 423–432.
Go to article

Authors and Affiliations

Paulina Bogusz
1 2
Marzena Brodowska
2
Paweł Muszyński
3

  1. Analytical laboratory, Łukasiewicz Research Network–New Chemical Syntheses Institute, Puławy, Poland
  2. Department of Agricultural and Environmental Chemistry, University of Life Sciences in Lublin, Poland
  3. Department of Chemistry, University of Life Sciences in Lublin, Poland
Download PDF Download RIS Download Bibtex

Abstract

Polycyclic aromatic hydrocarbons (PAHs) occur in soils at concentrations of ng•g-1 or less, and their levels are influenced by a number of factors, including the content of organic matter. Extraction of PAHs from soils, enriched in organic fraction, can be problematic, time-consuming and cost-intensive. The aim of this study was to modify an ultrasound-assisted solid-liquid extraction method, used for the isolation of 16 priority PAHs from forest soils collected from soil (sub)horizons with different organic matter content. The following parameters were considered: (i) the type and volume of solvent, (ii) the time of extraction and (iii) the purification of extracts by the SPE method. The final qualitative and quantitative determination of 16 PAHs was performed by the GC-MS method. The following results were obtained: recovery 71-107%, R2 = 0.993-0.999, LOD = 0.008-0.026 μg•ml-1 and LOQ = 0.024-0.078 μg•ml-1. The above method was successfully applied for the extraction of selected PAHs from organic soil samples collected from forest complexes located in south-central Poland.
Go to article

Bibliography

  1. Baran, S. & Oleszczuk, P. (2002). Chromatographic determination of polycyclic aromatic hydrocarbons (PAH) In sewage sludge, soil, and sewage sludge-amended soils, Polish Journal of Environmental Studies, 11, 6, pp. 609-615.
  2. Barchańska, H., Czaplicka, M. & Kyzioł-Komosińska, J. (2020). Interaction of selected pesticides with mineral and organic soil components, Archives of Environmental Protection, 46, 3, pp. 80-91. DOI:10.24425/aep.2020.134538
  3. Chaber, P. & Gworek, B. (2020). Surface horizons of forest soils for the diagnosis of soil environment contamination and toxicity caused by polycyclic aromatic hydrocarbons (PAHs), PLoS ONE, 15, 4, pp. 1-15. DOI:10.1371/journal.pone.0231359
  4. Dołęgowska, S., Sołtys, A. & Krzciuk, K. (2024). Organic fermentative-humic soil subhorizon (Ofh) as a ‘natural sponge’ of selected trace elements: Does this feature make it a potential geoindicator of temperate soil quality? Land Degradation & Development, 35, 8, pp. 2897-2912. DOI:10.1002/ldr.5104
  5. Dołęgowska, S., Sołtys, A., Krzciuk, K., Wideł, D. & Michalik, A. (2025). Variability of PAH patterns in upper forest soil (sub)horizons – A case study from south-central Poland, Land Degradation & Development, DOI:10.1002/ldr.5346
  6. Famiyeh, L., Chen, K., Xu, J., Sun, Y., Guo, Q., Wang, C., Lv, J., Tang, Y.-T., Yu, H., Snape, C. & He, J. (2021). A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons, Science of Total Environment, 789, pp. 1-18. DOI:10.1016/j.scitotenv.2021.147741
  7. Gholami, S., Behnami, A., Arani, M.H. & Kalantary, R.R. (2024). Impact of humic substances on the bioremediation of polycyclic aromatic hydrocarbons in contaminated soils and sediments: A review, Environmental Chemistry Letters, 22, pp. 889-918. DOI:10.1007/s10311-023-01678-z
  8. Hartemink, A.E., Zhang, Y., Bockheim, J.G., Curi, N., Silva, S.H.G., Grauer-Gray, J., Lowe, D.J. & Krasilnikov, P. (2020). Soil horizon variation: A review, Advances in Agronomy, 160, 1, pp. 125-185. DOI:10.1016/bs.agron.2019.10.003
  9. Kariyawasam, T., Doran, G.S., Howitt, J.A. & Prenzler, P.D. (2023). Optimization and comparison of microwave-assisted extraction, supercritical fluid extraction, and eucalyptus oil-assisted extraction of polycyclic aromatic hydrocarbons from soil and sediment, Environmental Toxicology and Chemistry, 42, 5, pp. 982-994. DOI:10.1002/etc.5593
  10. Kostecki, M. (2022). An attempt to describe the correlation between granulometric structure and the concentration of speciated forms of phosphorus and selected metals in the bottom sediments of a thermally contaminated dam reservoir, Archives of Environmental Protection, 48, 4, pp. 78-94. DOI:10.24425/aep.2022.143711
  11. Łyszczarz, S., Lasota, J. & Błońska, E. (2022). Polycyclic aromatic hydrocarbons accumulation in soil horizons of different temperate forest stands, Land Degradation & Development, 33, pp. 945-959. DOI:10.1002/ldr.4172
  12. Migaszewski, Z.M., Gałuszka, A. & Pasławski, P. (2002). Polynuclear aromatic hydrocarbons, phenols, and trace metals in selected soil profiles and plant bioindicators in the Holy Cross Mountains, South-Central Poland, Environmental International, 28, pp. 303-313. DOI:10.1016/S0160-4120(02)00039-9
  13. Mogashane, T.M., Mokoena, L. & Tshilongo, J. (2024). A review on recent developments in the extraction and identification of polycyclic aromatic hydrocarbons from environmental samples, Water, 16, pp. 1-23. DOI:10.3390/w16172520
  14. Ozcan, S., Tor, A. & Aydin, M.E. (2009). Determination of polycyclic aromatic hydrocarbons in soil by miniaturized ultrasonic extraction and gas chromatography-mass selective detector, CLEAN – Soil Air Water, 37, 10, pp. 811-817. DOI:10.1002/clen.200900110
  15. Patel, A.B., Shaikh, S., Jain, K.R., Desai, C. & Madamwar, D. (2020). Polycyclic aromatic hydrocarbons: sources, toxicity and remediation approaches, Frontiers in Microbiology, 11, pp. 1-23. DOI:10.3389/fmicb.2020.562813
  16. Pohl, A. & Kostecki, M. (2020). Spatial distribution, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in water and bottom sediments of the anthropogenic lymnic ecosystems under conditions of diversified anthropopressure, Archives of Environmental Protection, 46, 4, pp. 104-120. DOI:10.24425/aep.2020.135769
  17. Premnath, N., Mohanrasu, K., Guru Raj Rao, R., Dinesh, G.H., Prakash, G.S., Ananthi, V., Ponnuchamy, K., Muthusamy, G. & Arun, A. (2021). A crucial review on polycyclic aromatic Hydrocarbons – Environmental occurrence and strategies for microbial degradation, Chemosphere, 280, pp. 1-14. DOI:10.1016/j.chemosphere.2021.130608
  18. Saeedi, M., Li, L.Y. & Grace, J.R. (2020). Effect of co-existing heavy metals and natural organic matter on sorption/desorption of polycyclic aromatic hydrocarbons in soil: A review, Pollution, 6, 1, pp. 1-24. DOI:10.22059/poll.2019.284335.638
  19. Seyfi, S., Katibeh, H. & Heshami, M. (2021). Investigation of the process of adsorption of heavy metals in coastal sands containing micro-plastics, with special attention to the effect of aging process and bacterial spread in micro-plastics, Archives of Environmental Protection, 47, 3, pp. 50-59. DOI:10.24425/aep.2021.138463
  20. Silalahi, E.T.M.E., Anita, S. & Teruna, H.Y. (2021). Comparison of extraction techniques for the determination of polycyclic aromatic hydrocarbons (PAHs) in soil, Journal of Physics: Conference Series, 1819, pp. 1-8. DOI: 10.1088/1742-6596/1819/1/012061
  21. Sun, F., Littlejohn, D. & Gibson, M.D. (1998). Ultrasonication extraction and solid phase extraction clean-up for determination of US EPA 16 priority pollutant polycyclic aromatic hydrocarbons in soils by reversed-phase liquid chromatography with ultraviolet absorption detection, Analitica Chimica Acta, 364, pp. 1-11. DOI:10.1016/S0003-2670(98)00186-X
  22. Sushkova, S., Minkina, T., Tarigholizadeh, S., Antonenko, E., Konstantinova, E., Gülser, C., Dudnikova, T., Barbashev, A. & Kızılkaya, R. (2020). PAHs accumulation in soil-plant system of Phragmites australis Cav. in soil under long-term chemical contamination, Eurasian Journal of Soil Science, 9, 3, pp. 242-253. DOI:10.18393/ejss.734607
  23. Ukalska-Jaruga, A., Smreczak, B. & Klimkowicz-Pawlas, A. (2019). Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons, Journal of Soils and Sediments, 19, pp. 1890-1900. DOI:10.1007/s11368-018-2214-x
  24. Ukalska-Jaruga, A. & Smreczak, B. (2020). The impact of organic matter on polycyclic aromatic hydrocarbon (PAH) availability and persistence in soils, Molecules, 25, 11, pp. 1-15. DOI:10.3390/molecules25112470
  25. Venkatraman, G., Giribabu, N., Mohan, P.S., Muttiah, B., Govindarajan, V.K., Alagiri, M., Rahman, P.S.A. & Karsani, S.A. (2024). Environmental impact and human health effects of polycyclic aromatic hydrocarbons and remedial strategies: A detailed review, Chemosphere, 351, 141227. DOI:10.1016/j.chemosphere.2024.141227
  26. Zuloaga, O., Fitzpatrick, L.J., Etxebarria, N. & Dean, J.R. (2000). Influence of solvent and soil type on the pressurized fluid extraction of PAHs, Journal of Environmental Monitoring, 6, pp. 634-638. DOI:10.1039/b006178f
Go to article

Authors and Affiliations

Agnieszka Sołtys
1
Dariusz Wideł
1
Sabina Dołęgowska
1

  1. Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

Two industrial waste products – namely, cement bypass dust and apple pomace - were used in the synthesis of a new ecological mineral-carbonaceous material intended that can be used for the adsorption of organic pollutants. The raw materials were mixed at initial ratios of 1:5, 1:9, and 1:18, then subjected to pyrolysis in a nitrogen atmosphere at 800°C. The chemical characterization of the resulting mineral-carbonaceous materials showed that the concentrations of Zn, Cd, and Pb were significantly lower than those in the raw and pyrolyzed bypass dust samples, while the concentrations of Na, Mg, Si, and P were higher. The composition and structure of the mineral-carbonaceous materials depend on the initial dust-to-pomace weight ratio. All materials exhibited a mesoporous nature, with specific surface areas more than one hundred times greater than those of the individual substrates. The highest value exhibits the material with the 1:9 bypass dust-to-apple pomace ratio. This material also had a homogenous, fine-grained structure, with the bypass dust completely covered by carbon.After 24 h, approximately 90% of captan was removed from the aqueous solution and adsorbed onto the mineral-carbonaceous materials. The removal efficiency depended on the initial bypass dust-to-apple pomace ratio, with the best performance (97.3%) observed in the material synthesized at the 1:9 ratio. Our results confirm that otherwise useless wastes can serve as suitable substrates for the synthesis of mineral-carbonaceous materials, which can function as adsorbents for organic pollutants and as potential sources of valuable nutrients.
Go to article

Bibliography

  1. Abin-Bazaine, A., Trujillo, A.C. & Olmos-Marquez, M., (2022). Adsorption Isotherms: Enlightenment of the Phenomenon of Adsorption. In: Ince, M., Ince, O.K. (eds) Wastewater Treatment. IntechOpen. DOI:10.5772/intechopen.104260
  2. Amalina, F., Razak, A.S.A., Krishnan, S., Sulaiman, H., Zularisam, A.W. & Nasrullah, M. (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. J. Hazard. Mater. Adv. 7, 100134. DOI:10.1016/j.hazadv.2022.100134
  3. Barnat-Hunek, D., Góra, J., Suchorab, Z. & Łagód, G. (2018). Cement kiln dust, Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. DOI:10.1016/B978-0-08-102156-9.00005-5
  4. Barreira, J.C.M., Arraibi, A.A. & Ferreira, I.C.F.R. (2019). Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 90, pp. 76–87. DOI:10.1016/j.tifs.2019.05.014
  5. Bhat, V.S., Cohen, S.M., Gordon, E.B., Wood, C.E., Cullen, J.M., Harris, M.A., Proctor, D.M. & Thompson, C.M. (2020). An adverse outcome pathway for small intestinal tumors in mice involving chronic cytotoxicity and regenerative hyperplasia: a case study with hexavalent chromium, captan, and folpet. Crit. Rev. Toxicol. 50, pp. 685–706. DOI:10.1080/10408444.2020.1823934
  6. Borek, K., Czapik, P. & Dachowski, R. (2023). Cement Bypass Dust as an Ecological Binder Substitute in Autoclaved Silica–Lime Products. Materials (Basel). 16. DOI:10.3390/ma16010316
  7. Buss, W., Wurzer, C., Manning, D.A.C., Rohling, E.J., Borevitz, J. & Mašek, O. (2022). Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal. Commun. Earth Environ. 3, pp. 1–11. DOI:10.1038/s43247-022-00394-w
  8. Charmas, B., Wawrzaszek, B. & Jedynak, K. (2024). Effect of pyrolysis temperature and hydrothermal activation on structure, physicochemical, thermal and dye adsorption characteristics of the biocarbons. ChemPhysChem 25, pp. 1–8. DOI:10.1002/cphc.202300773
  9. Charmas, B., Zięzio, M. & Jedynak, K. (2023). Assessment of the Porous Structure and Surface Chemistry of Activated Biocarbons Used for Methylene Blue Adsorption. Molecules 28. DOI:10.3390/molecules28134922
  10. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and Thhe Committee of the Regions - Taking sustainable use of resources forward - A Thematic Strategy on the prevention and recycling of waste {SEC(2005) 1681} {SEC(2005) 1682}
  11. Cutillas, V., Jesús, F., Ferrer, C. & Fernández-Alba, A.R. (2021). Overcoming difficulties in the evaluation of captan and folpet residues by supercritical fluid chromatography coupled to mass spectrometry. Talanta 223, 121714. DOI:10.1016/j.talanta.2020.121714
  12. Directive 2006/12/EC of the European Parliament and of the Council of 5 April 2006 on waste (Text with EEA relevance)
  13. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance)
  14. Document 52005DC0666 - Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions - Promoting the sustainable use of resources - Thematic Strategy on the prevention and recycling of waste {SEC(2005) 1681} {SEC(2005) 1682}. (in Polish)
  15. El-Haggar, S.M. (2007). Sustainability of Industrial Waste Management. Sustain. Ind. Des. Waste Manag. pp. 307–369. DOI:10.1016/b978-012373623-9/50012-5
  16. Enaime, G., Baçaoui, A., Yaacoubi, A. & Lübken, M. (2020). Biochar for wastewater treatment-conversion technologies and applications. Appl. Sci. 10. DOI:10.3390/app10103492
  17. Environmental Protection Agancy: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_ PC-081301_1-Sep-99.pdf
  18. Environmental Protection Agency: https://www.epa.gov/sites/default/files/2016-09/documents/captan.pdf
  19. European Parliament, 2023: Circular economy: definition, importance and benefits
  20. Frydel, L., Słomkiewicz, P.M. & Szczepanik, B. (2024). The adsorption studies of phenol derivatives on halloysite-carbon adsorbents by inverse liquid chromatography. Adsorption 30, pp. 185–199. DOI:10.1007/s10450-023-00396-w
  21. Gajda, A., Jodłowski, P., Kozieł, K., Kurowski, G., Hyjek, K., Skoczylas, N. & Pajdak, A. (2024). Adsorption of selected GHG on metal-organic frameworks in the context of accompanying thermal effects. Arch. Environ. Prot. 50, pp. 51–63. DOI:10.24425/aep.2024.152895
  22. Gommes, C.J. & Roberts, A.P. (2018). Stochastic analysis of capillary condensation in disordered mesopores. Phys. Chem. Chem. Phys. 20, pp. 13646-13659. DOI:10.1039/C8CP01628C
  23. Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends Food Sci. Technol. 99, pp. 284–294. DOI:10.1016/j.tifs.2020.03.012
  24. He, Q.K., Xu, C.L., Li, Y.P., Xu, Z.R., Luo, Y.S., Zhao, S.C., Wang, H.L., Qi, Z.Q. & Liu, Y. (2022). Captan exposure disrupts ovarian homeostasis and affects oocytes quality via mitochondrial dysfunction induced apoptosis. Chemosphere 286, 131625. DOI:10.1016/j.chemosphere.2021.131625
  25. Kainth., S., Sharma, P. & Pandey, O.P. (2024). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Appl. Surf. Sci. Adv. 19, 100562. DOI:10.1016/j.apsadv.2023.100562
  26. Kalina, M., Sovova, S., Svec, J., Trudicova, M., Hajzler, J., Kubikova, L. & Enev, V. (2022). The Effect of Pyrolysis Temperature and the Source Biomass on the Properties of Biochar Produced for the Agronomical Applications as the Soil Conditioner. Materials (Basel) 15. DOI:10.3390/ma15248855
  27. Kalinowska, M., Gołebiewska, E., Zawadzka, M., Choińska, R., Koronkiewicz, K., Piasecka-Jóźwiak, K. & Bujak, M. (2023). Sustainable extraction of bioactive compound from apple pomace through lactic acid bacteria (LAB) fermentation. Sci. Rep. 13, pp. 1–16. DOI:10.1038/s41598-023-46584-0
  28. Kane, S. & Ryan, C. (2022). Biochar from food waste as a sustainable replacement for carbon black in upcycled or compostable composites. Compos. Part C Open Access 8, 100274. DOI:10.1016/j.jcomc.2022.100274
  29. Ke-Fa, C. (2007). Surface structure of blended coals during pyrolysis. J. Ind. Eng. Chem. 58, pp. 1798–1804.
  30. Kim, H.C., Woo, H.E., Jeong, I., Oh, S.J., Lee, S.H. & Kim, K. (2019). Changes in Sediment Properties Caused by a Covering of Oyster Shells Pyrolyzed at a Low Temperature. J. Korean Soc. Mar. Environ. Saf. 25, pp. 74–80. DOI:10.7837/kosomes.2019.25.1.074
  31. Lee, S.M., Lee, D., Kil, J.H., Lee, T., Song, H. & Sung Yum, W. (2023). Characteristics Analysis of Chlorine Bypass Dust and Water-washed Residue. Resour. Recycl. 32, pp. 44–51. DOI:10.7844/kirr.2023.32.5.44
  32. Liu, X.Q., Ding, H.S., Wang, Y.Y., Liu, W.J. & Jing, H. (2016). Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char with Ultra-High Adsorption to 1-Naphthol. Environ. Sci. Technol. 50, pp. 2602–2609. DOI:10.1021/acs.est.5b04536
  33. Lyu, F., Luiz, S.F., Azeredo, D.R.P., Cruz, A.G., Ajlouni, S. & Ranadheera, C.S. (2020). Apple pomace as a functional and healthy ingredient in food products: A review. Processes 8, pp. 1–15. DOI:10.3390/pr8030319
  34. Martău, G.A., Teleky, B.E., Ranga, F., Pop, I.D. & Vodnar, D.C. (2021). Apple Pomace as a Sustainable Substrate in Sourdough Fermentation. Front. Microbiol. 12, pp. 1–16. DOI:10.3389/fmicb.2021.742020
  35. Nair, R.R., Kißling, P.A., Marchanka, A., Lecinski, J., Turcios, A.E., Shamsuyeva, M., Rajendiran, N., Ganesan, S., Srinivasan, S.V., Papenbrock, J. & Weichgrebe, D. (2023). Biochar synthesis from mineral and ash-rich waste biomass, part 2: characterization of biochar and co-pyrolysis mechanism for carbon sequestration. Sustain. Environ. Res. 33. DOI:10.1186/s42834-023-00176-9
  36. National Strategy for Reducing Food Loss and Waste and Recycling Organics, EPA (https://www.epa.gov/circulareconomy/national-strategy-reducing-food-loss-and-waste-and-recycling-organics)
  37. Niedziński, T., Łabętowicz, J., Stępień, W. & Pęczek, T. (2023). Analysis of the Use of Biochar from Organic Waste Pyrolysis in Agriculture and Environmental Protection. J. Ecol. Eng. 24, pp. 85–98. DOI:10.12911/22998993/159347
  38. Pires, A. & Martinho, G. (2019). Waste hierarchy index for circular economy in waste management. Waste Manag. 95, pp. 298–305. DOI:10.1016/j.wasman.2019.06.014
  39. Qurat-ul-Ain, Shafiq, M., Capareda, S.C. & Firdaus-e-Bareen. (2021). Effect of different temperatures on the properties of pyrolysis products of Parthenium hysterophorus. J. Saudi Chem. Soc. 25, 101197. DOI:10.1016/j.jscs.2021.101197
  40. Ren, N., Tang, Y. & Li, M. (2018). Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar. Process. Saf. Environ. Prot. 115, pp. 70–78. DOI:10.1016/j.psep.2017.11.006
  41. Roik, T., Rashedi, A., Khanam, T., Chaubey, A., Balaganesan, G. & Ali, S. (2021). Structure and properties of new antifriction composites based on tool steel grinding waste. Sustain. 13, pp. 3–11. DOI:10.3390/su13168823
  42. Sakhiya, A.K., Anand, A. & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times, Biochar. Springer Singapore. DOI:10.1007/s42773-020-00047-1
  43. Sefatlhi, K.L., Ultra, V.U., Majoni, S., Oleszek, S. & Manyiwa, T. (2024). Adsorption of nitrate and phosphate ions using ZnCl2-activated biochars from phytoremediation biomasses. Arch. Environ. Prot. 50, pp. 65–83. DOI: 10.24425/aep.2024.151687
  44. Storck, S., Bretinger, H. & Maier, W.F. (1998). Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A Gen. 174, pp. 137–146. DOI:10.1016/S0926-860X(98)00164-1
  45. Suárez-Garcı́a, F., Martı́nez-Alonso, A. & Tascón, J.M.D. (2002). Pyrolysis of apple pulp: chemical activation with phosphoric acid. J. Anal. Appl. Pyrolysis. 63, pp. 283–301. DOI:10.1016/S0165-2370(01)00160-7
  46. Suliman, W., Harsh, J.B., Abu-Lail, N.I., Fortuna, A.M., Dallmeyer, I. & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy 84, pp. 37–48. DOI:10.1016/j.biombioe.2015.11.010
  47. Toncón-Leal, C.F., Villarroel-Rocha, J., Silva, M.T.P., Braga T.P. & Sapag, K. (2021). Characterization of mesoporous region by the scanning of the hysteresis loop in adsorption–desorption isotherms. Adsorption 27, pp. 1109–1122. DOI:10.1007/s10450-021-00342-8
  48. Tamasiga, P., Miri, T., Onyeaka, H. & Hart, A. (2022). Food Waste and Circular Economy: Challenges and Opportunities. Sustain. 14. DOI:10.3390/su14169896
  49. Tappyrova, N.I., Kravtsova, O.N., Protodyakonova, N.A., Timofeev, A.M. & Andreev, A.S. (2022). Capillary condensation hysteresis model in porous bodies. AIP Conf. Proc. 2528, 020049. DOI:10.1063/5.0106255
  50. Tkaczewska, E. (2019). The Influence of Cement Bypass Dust on the Properties of Cement Curing Under Normal and Autoclave Conditions. Struct. Environ. 11, pp. 5–22. DOI:10.30540/sae-2019-001
  51. Tu, P., Zhang, G., Wei, G., Li, J., Li, Y., Deng, L. & Yuan, H. (2022). Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresour. Bioprocess. 9. DOI:10.1186/s40643-022-00618-z
  52. Uliasz-Bocheńczyk, A. (2019). Chemical characteristics of dust from cement kilns. Gospod. Surowcami Miner. / Miner. Resour. Manag. 35, pp. 87–102. DOI:10.24425/gsm.2019.128524
  53. Vaiškūnaitė, R. (2024). Research of batch and fixed-bed column adsorption for phosphorus removal from wastewater using sewage sludge biochar. Arch. Environ. Prot. 50, pp. 72–81. DOI:10.24425/aep.2024.152897
  54. Wang, J., Zeng, P., Liu, Z. & Li, Y. (2023). Manufacture of potassium chloride from cement kiln bypass dust: An industrial implementation case for transforming waste into valuable resources. Heliyon 9, e21806. DOI:10.1016/j.heliyon.2023.e21806
  55. Zhang, S., Ji, Y., Dang, J., Zhao, J. & Chen, S. (2019). Magnetic apple pomace biochar: Simple preparation, characterization, and application for enriching Ag(I) in effluents. Sci. Total. Environ. 668, pp. 115–123. DOI:10.1016/j.scitotenv.2019.02.318
  56. Zhang, S., Ji, Y., Du, Y., Ma, X., Lin, J. & Chen, S. (2022). Apple-pomace-based porous biochar as electrode materials for supercapacitors. Diam. Relat. Mater. 130, 109507. DOI:10.1016/j.diamond.2022.109507
  57. Zhong, M., Huang, H., Xu, P. & Hu, J. (2023). Catalysis of Minerals in Pyrolysis Experiments. Minerals 13. DOI:10.3390/min13040515
Go to article

Authors and Affiliations

Piotr Słomkiewicz
1
Sabina Dołęgowska
1
Katarzyna Piekacz
1
Dariusz Wideł
1
Maria Włodarczyk-Makuła
2

  1. Institute of Chemistry, Jan Kochanowski University, Kielce, Poland
  2. Faculty of Infrastructure and Environment, Częstochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The characteristics of municipal solid waste in Indonesia tend to be wet and have a low calorific value. Therefore, a pre-treatment process is needed to dry the municipal solid waste before converting it into RDF. Biodrying is one of the solid waste drying methods that can be used for this purpose. This study aims to determine the effect of variations in bulking agents on the biodrying performance of municipal solid waste and to compare the resulting product with RDF standards. Reactor 1 consists of 100% organic waste without a bulking agent. Reactors 2, 3, and 4 contain organic waste mixed with straw, wood shavings, and rice husks, respectively, as bulking agents. The experiment lasted for 30 days. Measurements were taken for solid waste mass, temperature, moisture content, calorific value, proximate analysis (including volatile solids, fixed carbon, and ash content), and ultimate analysis. Statistical analysis of the test parameters showed that the addition of bulking agents significantly affected the moisture content and fixed carbon levels. A comparison between the biodrying results and RDF standards from several references shows that the biodried waste only meets RDF requirements for volatile content, chlorine, and sulfur. Among the variations tested, the organic waste mixed with straw (Reactor 2) yielded the most optimal results compared to other variations, with a moisture content of 54.33% (wet basis) and a calorific value of 5.4 MJ/kg.
Go to article

Bibliography

  1. Ab Jalil, N. A., H. Basri, N. E. Ahmad Basri & Mohammed F. M. Abushammala. (2016). Biodrying of Municipal Solid Waste under Different Ventilation Periods. Environmental Engineering Research, 21,2, pp. 145–51. DOI:10.4491/eer.2015.122
  2. Adani, F. (2002). The Influence of Biomass Temperature on Biostabilization–Biodrying of Municipal Solid Waste. Bioresource Technology, 83,3, pp.173–179. DOI:10.1016/S0960-8524(01)00231-0
  3. Bilgin, Melayib & Şevket Tulun. (2015). Biodrying for Municipal Solid Waste: Volume and Weight Reduction. Environmental Technology 36, 13, pp.1691–1697. DOI:10.1080/09593330.2015.1006262.
  4. Cai, Lu, Tong-Bin Chen, Ding Gao, Guo-Di Zheng, Hong-Tao Liu & Tian-Hao Pan. (2013). Influence of Forced Air Volume on Water Evaporation during Sewage Sludge Bio-Drying. Water Research, 47, 13, pp.4767–4773. DOI:10.1016/j.watres.2013.03.048
  5. Chaerul,M. & Wardhani, A. K. (2020) Refuse Derived Fuel (RDF) dari Sampah Perkotaan dengan Proses Biodrying: Review, Jurnal Presipitasi : Media Komunikasi dan Pengembangan Teknik Lingkungan, 17, 1, pp. 62-74, DOI:10.14710/presipitasi.v17i1.62-74
  6. Cheremisinoff, N. P. (2003). Handbook of Solid Waste Management and Minimization Technologies.” [in] Handbook of Solid Waste Management and Minimization Technologies. Burlington: Elseiver Science.
  7. Colomer-Mendoza, F. J.,Herrera-Prats, L., Robles-Martínez, F., Gallardo-Izquierdo, A. & Piña-Guzmán, A.B. (2013). Effect of Airflow on Biodrying of Gardening Wastes in Reactors. Journal of Environmental Sciences 25, 5, pp.865–872. DOI:10.1016/S1001-0742(12)60123-5.
  8. Damanhuri, E. & Padmi, T. (2019). Integrated Waste Management. Bandung: ITB Press.
  9. He, P., Ling, Z., Wei, Z,, Duo, W. & Liming, S. (2013). Energy Balance of a Biodrying Process for Organic Wastes of High Moisture Content: A Review. Drying Technology 31, 2, pp. 132–145. DOI:10.1080/07373937.2012.693143.
  10. Jameel, H., Deepak, R., Keshwani, C., Seth, F. & Treasure, T. H. (2010).Thermochemical Conversion of Biomass to Power and Fuels. Taylor and Francis Group.
  11. Kalamdhad, A.S. & Kazmi, A.A. 2(009). Effects of Turning Frequency on Compost Stability and Some Chemical Characteristics in a Rotary Drum Composter. Chemosphere 74, 10, pp. 1327–1334. DOI:10.1016/j.chemosphere.2008.11.058.
  12. Liu, T., Chongwei, C., Junguo, H. &Jian, T. (2018). Effect of Different Bulking Agents on Water Variation and Thermal Balance and Their Respective Contribution to Bio-Generated Heat during Long-Term Storage Sludge Biodrying Process. Environmental Science and Pollution Research, 25, 18, pp. 17602–17610. DOI:10.1007/s11356-018-1906-5.
  13. Martins, F., Felgueiras, C., Smitkova, M. & Caetano, N. (2019). Analysis of Fossil Fuel Energy Consumption and Environmental Impacts in European Countries. DOI:10.3390/en12060964
  14. Pasek, A.D., Gultom, K.W. & Suwono, A. (2013). Feasibility of Recovering Energy from Municipal Solid Waste to Generate Electricity. Journal of Engineering and Technological Sciences, 45, 3, pp. 241–256. DOI:10.5614/j.eng.technol.sci.2013.45.3.3
  15. Stanford, K., Hao, X., Xu,S., McAllister, T. A., Larney, F. & Leonard, J. J. (2009). Effects of Age of Cattle, Turning Technology and Compost Environment on Disappearance of Bone from Mortality Compost. Bioresource Technology, 100, 19, pp. 4417–4422. DOI:10.1016/j.biortech.2008.11.061
  16. Sugni, M., E. C. & Adani, F. (2005). Biostabilization?Biodrying of Municipal Solid Waste by Inverting Air-Flow. Bioresource Technology, 96, 12, pp. 1331–1337. DOI:10.1016/j.biortech.2004.11.016.
  17. The Ministry of Environment and Forestry. (2021). National Waste Management Information System. Ministry of Environment and Forestry Directorate General of Waste, Waste and Hazardous Waste Management Directorate of Waste Handling
  18. Tun, M.M. & Juchelková, D. (2018). Drying Methods for Municipal Solid Waste Quality Improvement in the Developed and Developing Countries: A Review. Environmental Engineering Research, 24, 4, pp. 529–542. DOI:10.4491/eer.2018.327
  19. Yang, F., Li,G.X., Yang,Q.Y.& Luo,W.H. (2013). Effect of Bulking Agents on Maturity and Gaseous Emissions during Kitchen Waste Composting. Chemosphere, 93, 7, pp. 1393–1399. DOI:10.1016/j.chemosphere.2013.07.002
  20. Yuan, J., Li, Y., Wang, G., Zhang, D., Shen, Y., Ma, R., Li, D., Li, S. & Li, G. (2019). Biodrying Performance and Combustion Characteristics Related to Bulking Agent Amendments during Kitchen Waste Biodrying. Bioresource Technology, 284, pp. 56–64. DOI:10.1016/j.biortech.2019.03.115
  21. Yuan, J., Zhang, D., Li,Y., Chadwick, D., Li, G., Li, Y. & Du, L. (2017). Effects of Adding Bulking Agents on Biostabilization and Drying of Municipal Solid Waste. Waste Management, 62, pp. 52–60. DOI:10.1016/j.wasman.2017.02.027
  22. Zawadzka, A., Krzystek, L., Stolarek,P. & Ledakowicz, S. (2010). Biodrying of Organic Fraction of Municipal Solid Wastes. Drying Technology, 28, 10, pp. 1220–1226. DOI:10.1080/07373937.2010.483034
  23. Zhang, D., He, P., Shao, L., Jin, T. & Han, J. (2008). Biodrying of Municipal Solid Waste with High Water Content by Combined Hydrolytic-Aerobic Technology. Journal of Environmental Sciences 20(12):1534–1540. DOI: 10.1016/S1001-0742(08)62562-0
  24. Zhao, Ling, Wei-Mei Gu, Pin-Jing He, and Li-Ming Shao. (2011). “Biodegradation Potential of Bulking Agents Used in Sludge Bio-Drying and Their Contribution to Bio-Generated Heat.” Water Research 45(6):2322–2330. DOI:10.1016/j.watres.2011.01.014
  25. Zhao, W. & Ci, S. (2019). Nanomaterials As Electrode Materials of Microbial Electrolysis Cells for Hydrogen Generation. Nanomaterials for the Removal of Pollutants and Resource Reutilization. DOI:10.1016/B978-0-12-814837-2.00007-X
  26. Zhou, W. & Zeng, D. (2024). Analysis of Output, Component Characteristics and Management Status of Municipal Solid Waste on the Tibetan Plateau. Archives of Environmental Protection, 50, 2, pp. 93–100. DOI:10.24425/aep.2024.150556
Go to article

Authors and Affiliations

I Made Wahyu Widyarsana
1
ORCID: ORCID
Suci Wulandari
2
ORCID: ORCID

  1. Faculty of Civil and Environmental Engineering, Bandung Institute of Technology,West Java, Indonesia
  2. Department of Environmental Engineering, Faculty of Infrastructure and Regional Engineering,Sumatera Institute of Technology, Way Huwi-Jati Agung, South Lampung, Indonesia
Download PDF Download RIS Download Bibtex

Abstract

Selenium (Se) mobility and bioavailability in natural environments are influenced by its adsorption at the aqueous interface of lepidocrocite (Lep), which is significantly affected by humic acid (HA), a common natural organic matter (NOM). This study investigated the mechanisms by which HA influences Se adsorption on Lep, aiming to understand how HA affects Se speciation, distribution, and mobility in natural environments. Batch experiments were conducted using synthetic Lep and HA under varying pH values (4-8) and HA concentrations (10-100 mg C/L). Interactions among HA, Lep, and Se were characterized using Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). Zeta potential and hydrodynamic diameter measurements were also performed to evaluate colloidal stability. HA significantly reduced Se adsorption on Lep by competing for adsorption sites, forming coordination bonds with Se, and altering Lep’s surface charge and hydrophobicity. At higher HA concentrations, dissolved and colloidal Se increased, while particulate Se decreased. Lower pH enhanced Se adsorption due to protonation, whereas higher pH promoted Se mobility. FTIR and SEM analyses confirmed HA’s role in modifying Lep’s surface properties and influencing Se adsorption behavior. HA plays a critical role in modulating Se adsorption on Lep through competitive adsorption, coordination interactions, and surface modification. These mechanisms influence Se speciation, distribution, and mobility, with implications for managing Se bioavailability in agricultural and environmental systems. This study provides insights into the geochemical cycling of Se and offers guidance for optimizing Se-rich agricultural practices.
Go to article

Bibliography

  1. Alsaiari, R., Shedaiwa, I., Al-Qadri, F.A., Musa, E.M., Alqahtani, H., Alkorbi, F., Alsaiari, N.A. & Mohamed, M.M. (2024). Peganum Harmala L. plant as green non-toxic adsorbent for iron removal from water. Archives of Environmental Protection, 50,1, pp. 3-12, DOI:10.24425/aep.2024.149427.
  2. Bao, Y., Bolan, N.S., Lai, J., Wang, Y., Jin, X., Kirkham, M.B., Wu, X., Fang, Z., Zhang, Y. & Wang, H. (2022). Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: A review. Critical Reviews in Environmental Science and Technology, 52, 22, pp. 4016-4037, DOI:10.1080/10643389.2021.1974766.
  3. Bogusz, P., Zimnoch, U., Brodowska, M.S. & Michalak, J. (2024). The trend of changes in soil organic carbon content in Poland over recent years. Archives of Environmental Protection, 50,1, pp. 35-44. DOI:10.24425/aep.2024.149430.
  4. Bu, H., Lei, Q., Tong, H., Liu, C., Hu, S., Xu, W., Wang, Y., Chen, M. & Qiao, J. (2023). Humic acid controls cadmium stabilization during Fe(II)-induced lepidocrocite transformation. Science of the Total Environment, 861, pp. 160624. DOI:10.1016/j.scitotenv.2022.160624.
  5. Cheng, B., Liu, J., Li, X., Yue, L., Cao, X., Li, J., Wang, C. & Wang, Z. (2024). Bioavailability of selenium nanoparticles in soil and plant: the role of particle size. Environmental and Experimental Botany, 220, pp. 105682. DOI:10.1016/j.envexpbot.2024.105682.
  6. Das, S., Jim Hendry, M. & Essilfie-Dughan, J. (2013). Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Applied Geochemistry, 28, pp. 185-193, DOI:10.1016/j.apgeochem.2012.10.026.
  7. Dinh, Q.T., Li, Z., Tran, T.A.T., Wang, D. & Liang, D. (2017). Role of organic acids on the bioavailability of selenium in soil: A review. Chemosphere, 184, pp. 618-635, DOI:10.1016/j.chemosphere.2017.06.034.
  8. Fan, J., Zhao, G., Sun, J., Hu, Y. & Wang, T. (2019). Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation. Science of the Total Environment, 684, pp. 476-485. DOI:10.1016/j.scitotenv.2019.05.246.
  9. Favorito, J.E., Eick, M.J. & Grossl, P.R. (2018). Adsorption of Selenite and Selenate on Ferrihydrite in the Presence and Absence of Dissolved Organic Carbon. Journal of Environmental Quality, 47,1, pp. 147-155, DOI:10.2134/jeq2017.09.0352.
  10. Francisco, P.C.M., Sato, T., Otake, T., Kasama, T., Suzuki, S., Shiwaku, H. & Yaita, T. (2018). Mechanisms of Se(IV) Co-precipitation with Ferrihydrite at Acidic and Alkaline Conditions and Its Behavior during Aging. Environmental Science & Technology, 52, 8, pp. 4817-4826, DOI:10.1021/acs.est.8b00462.
  11. Jia, Y., Luo, T., Yu, X.-Y., Sun, B., Liu, J.-H. & Huang, X.-J. (2013). Synthesis of monodispersed α-FeOOH nanorods with a high content of surface hydroxyl groups and enhanced ion-exchange properties towards As(v). RSC Advances, 3, 36, pp. 15805-15811, DOI:10.1039/C3RA40980E.
  12. Kumpulainen, S., von der Kammer, F., Hofmann, T. (2008). Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. Water Research, 42,8, pp. 2051-2060, DOI: 10.1016/j.watres.2007.12.015.
  13. Kusmierek, K., Dabek, L. & Swiatkowski, A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials. Archives of Environmental Protection, 49,1, pp. 47-56, DOI:10.24425/aep.2023.144736.
  14. Li, Z., Liang, D., Peng, Q., Cui, Z., Huang, J. & Lin, Z. (2017). Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, pp. 69-79. DOI:10.1016/j.geoderma.2017.02.019.
  15. Olaetxea, M., De Hita, D., Garcia, C.A., Fuentes, M., Baigorri, R., Mora, V., Garnica, M., Urrutia, O., Erro, J., Zamarreño, A.M., Berbara, R.L. & Garcia-Mina, J.M. (2018). Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Applied Soil Ecology, 123, pp. 521-537. DOI:10.1016/j.apsoil.2017.06.007.
  16. Park, J.H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N. & Chung, J.-W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185,2, pp. 549-574. DOI:10.1016/j.jhazmat.2010.09.082.
  17. Peng, J., Fu, F., Ye, C. & Tang, B. (2022). Interaction between Se(IV) and fulvic acid and its impact on Se(IV) immobility in ferrihydrite-Se(IV) coprecipitates during aging. Environmental Pollution, 293, pp. 118552. DOI:10.1016/j.envpol.2021.118552.
  18. Pintor, A.M.A., Vieira, B.R.C., Brandão, C.C., Boaventura, R.A.R. & Botelho, C.M.S. (2020). Complexation mechanisms in arsenic and phosphorus adsorption onto iron-coated cork granulates. Journal of Environmental Chemical Engineering, 8, 5, pp. 104184, DOI:10.1016/j.jece.2020.104184.
  19. Qin, H.-B., Zhu, J.-M. & Su, H. (2012). Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China. Chemosphere, 86, 6, pp. 626-633, DOI:10.1016/j.chemosphere.2011.10.055.
  20. Qin, L., Wang, M., Sun, X., Yu, L., Wang, J., Han, Y. & Chen, S. (2023). Formation of ferrihydrite induced by low pe+pH in paddy soil reduces Cd uptake by rice: Evidence from Cd isotope fractionation. Environmental Pollution, 328, pp. 121644, DOI:10.1016/j.envpol.2023.121644.
  21. Rahimi, S., Soleimani, M. & Azadmehr, A.R. (2021). Performance Evaluation of Synthetic Goethite and Lepidocrocite Nanoadsorbents for the Removal of Aniline from a Model Liquid Fuel through Kinetic and Equilibrium Studies. Energy & Fuels, 35, 13, pp. 10659-10668, DOI:10.1021/acs.energyfuels.1c00474.
  22. Ros, G.H., van Rotterdam, A.M.D., Bussink, D.W. & Bindraban, P.S. (2016). Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant and Soil, 404, 1, pp. 99-112. DOI:10.1007/s11104-016-2830-4.
  23. Rovira, M., Giménez, J., Martínez, M., Martínez-Lladó, X., de Pablo, J., Martí, V. & Duro, L. (2008). Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite. Journal of Hazardous Materials, 150, 2, pp. 279-284. DOI:10.1016/j.jhazmat.2007.04.098.
  24. Sefatlhi, K.L., Ultra, V.U., Stephen, M., Oleszek, S. & Manyiwa, T. (2024). Adsorption of nitrate and phosphate ions using ZnCl2-activated biochars from phytoremediation biomasses. Archives of Environmental Protection, 50, 3, pp. 65-83. DOI:10.24425/aep.2024.151687.
  25. Siéliéchi, J.M., Lartiges, B.S., Kayem, G.J., Hupont, S., Frochot, C., Thieme, J., Ghanbaja, J., d’Espinose de la Caillerie, J.B., Barrès, O., Kamga, R., Levitz, P. & Michot, L.J. (2008). Changes in humic acid conformation during coagulation with ferric chloride: Implications for drinking water treatment. Water Research, 42, 8, pp. 2111-2123, DOI:10.1016/j.watres.2007.11.017.
  26. Supriatin, S., Weng, L. & Comans, R.N.J. (2015). Selenium speciation and extractability in Dutch agricultural soils. Science of the Total Environment, 532, pp. 368-382. DOI:10.1016/j.scitotenv.2015.06.005.
  27. Terashima, M., Endo, T., Kimuro, S., Beppu, H., Nemoto, K. & Amano, Y. (2023). Iron-induced association between selenium and humic substances in groundwater from deep sedimentary formations. Journal of Nuclear Science and Technology, 60, 4, pp. 374-384. DOI:10.1080/00223131.2022.2111376.
  28. Tolu, J., Thiry, Y., Bueno, M., Jolivet, C., Potin-Gautier, M. & Le Hécho, I. (2014). Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Science of the Total Environment, 479-480, pp. 93-101. DOI:10.1016/j.scitotenv.2014.01.079.
  29. Weng, L., Vega, F.A., Supriatin, S., Bussink, W. & Riemsdijk, W.H.V. (2011). Speciation of Se and DOC in Soil Solution and Their Relation to Se Bioavailability. Environmental Science, Technology, 45,1, pp. 262-267. DOI:10.1021/es1016119.
  30. Xie, Y., Dong, H., Zeng, G., Zhang, L., Cheng, Y., Hou, K., Jiang, Z., Zhang, C. & Deng, J. (2017). The comparison of Se(IV) and Se(VI) sequestration by nanoscale zero-valent iron in aqueous solutions: The roles of solution chemistry. Journal of Hazardous Materials, 338, pp. 306-312. DOI:10.1016/j.jhazmat.2017.05.053.
  31. Xing, B., Ouyang, M., Graham, N. & Yu, W. (2020). Enhancement of phosphate adsorption during mineral transformation of natural siderite induced by humic acid: Mechanism and application. Chemical Engineering Journal, 393, pp. 124730. DOI:10.1016/j.cej.2020.124730.
  32. Ying, H. & Zhang, Y. (2019). Systems Biology of Selenium and Complex Disease. Biological Trace Element Research, 192, 1, pp. 38-50. DOI:10.1007/s12011-019-01781-9.
  33. Yoon, I.-H., Kim, K.-W., Bang, S. & Kim, M.G. (2011). Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion. Applied Catalysis B: Environmental, 104,1, pp. 185-192. DOI:10.1016/j.apcatb.2011.02.014.
  34. Yuan, Z., Su, R., Ma, X., Yu, L., Pan, Y., Chen, N., Chernikov, R., Cheung, L.K.L., Deevsalar, R., Tunc, A., Wang, L., Zeng, X., Lin, J. & Jia, Y. (2023). Direct immobilization of Se(IV) from acidic Se(IV)-rich wastewater via ferric selenite Co-precipitation. Journal of Hazardous Materials, 460, pp. 132346. DOI:10.1016/j.jhazmat.2023.132346.
  35. Zhang, H., Xie, S., Bao, Z., Tian, H., Carranza, E.J.M., Xiang, W., Yao, L. & Zhang, H. (2020). Underlying dynamics and effects of humic acid on selenium and cadmium uptake in rice seedlings. Journal of Soils and Sediments, 20, 1, pp. 109-121. DOI:10.1007/s11368-019-02413-4.
  36. Zhang, J., Wang, X., Zhan, S., Li, H., Ma, C. & Qiu, Z. (2021). Synthesis of Mg/Al-LDH nanoflakes decorated magnetic mesoporous MCM-41 and its application in humic acid adsorption.
Go to article

Authors and Affiliations

Shengmao Zhao
1
Jian Zhu
1
Elias Niyuhire
2
Ruyi Zheng
1
Wenjian Mao
3

  1. College of Resource and Environmental Engineering, Key Laboratory of Karst Georesource and Environment,Ministry of Education, Guizhou University, Guiyang 550025, PR China
  2. Ecole Normale Sup´erieure, D´epartement des Sciences Naturelles, Centre de Recherche en Sciences et de Perfectionnement Professionnel, Boulevard Mwezi Gisabo, B.P.: 6983 Bujumbura, Burundi
  3. Guizhou Lvxing Qingyuan Environmental Protection Co., Ltd., Guiyang 550002, PR China

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Reviewers

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more